精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若BD=,則∠ACD= .

【答案】112.5°
【解析】解:如圖,連結OC.
∵DC是⊙O的切線,
∴OC⊥DC,
∵BD=﹣1,OA=OB=OC=1,
∴OD=,
∴CD===1,
∴OC=CD,
∴∠DOC=45°,
∵OA=OC,
∴∠OAC=∠OCA,
∴∠OCA=∠DOC=22.5°,
∴∠ACD=∠OCA+∠OCD=22.5°+90°=112.5°.
所以答案是:112.5.

【考點精析】利用切線的性質定理對題目進行判斷即可得到答案,需要熟知切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知反比例函數y= (k為常數,k≠1).
(Ⅰ)其圖象與正比例函數y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1 , y1)、B(x2 , y2),當y1>y2時,試比較x1與x2的大。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2015朝陽)如圖,在△ABC中,以AB為直徑的⊙O交AC于點D,過點D作DE⊥BC于點E,且∠BDE=∠A.

(1)判斷DE與⊙O的位置關系并說明理由;
(2)若AC=16,tanA= , 求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人在100米直道AB上練習勻速往返跑,若甲、乙分別中A,B兩端同時出發(fā),分別到另一端點處掉頭,掉頭時間不計,速度分別為5m/s和4m/s.
(1)在坐標系中,虛線表示乙離A端的距離s(單位:m)與運動時間t(單位:s)之間的函數圖象(0≤t≤200),請在同一坐標系中用實線畫出甲離A端的距離s與運動時間t之間的函數圖象(0≤t≤200);

(2)根據(1)中所畫圖象,完成下列表格:

兩人相遇次數
(單位:次)

1

2

3

4

n

兩人所跑路程之和
(單位:m)

100

300

 


(3)①直接寫出甲、乙兩人分別在第一個100m內,s與t的函數解析式,并指出自變量t的取值范圍;
②當t=390s時,他們此時相遇嗎?若相遇,應是第幾次?若不相遇,請通過計算說明理由,并求出此時甲離A端的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場統計了今年1~5月A,B兩種品牌冰箱的銷售情況,并將獲得的數據繪制成折線統計圖

(1)分別求該商場這段時間內A,B兩種品牌冰箱月銷售量的中位數和方差。
(2)根據計算結果,比較該商場1~5月這兩種品牌冰箱月銷售量的穩(wěn)定性。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】【發(fā)現】如圖∠ACB=∠ADB=90°,那么點D在經過A,B,C三點的圓上(如圖①)

(1)【思考】如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側),那么點D還在經過A,B,C三點的圓上嗎?
請證明點D也不在⊙O內.
(2)【應用】
利用【發(fā)現】和【思考】中的結論解決問題:
若四邊形ABCD中,AD∥BC,∠CAD=90°,點E在邊AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延長線于點F(如圖④),求證:DF為Rt△ACD的外接圓的切線;

(2)如圖⑤,點G在BC的延長線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.

(1)求∠DOA的度數。
(2)求證:直線EDO相切.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)解不等式:
(2)計算:÷(a+2﹣

查看答案和解析>>

同步練習冊答案