在平面直角坐標(biāo)系中,拋物線與軸的兩個(gè)交點(diǎn)分別為A(-3,0)、B(1,0),過(guò)頂點(diǎn)C作CH⊥x軸于點(diǎn)H.
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)在軸上是否存在點(diǎn)D,使得△ACD是以AC為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)若點(diǎn)P為x軸上方的拋物線上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),PQ⊥AC于點(diǎn)Q,當(dāng)△PCQ與△ACH相似時(shí),求點(diǎn)P的坐標(biāo).
解:(1)由題意,得
解得,
拋物線的解析式為y=-x2-2x+3
頂點(diǎn)C的坐標(biāo)為(-1,4)
(2)假設(shè)在y軸上存在滿足條件的點(diǎn)D, 過(guò)點(diǎn)C作CE⊥y軸于點(diǎn)E.
由∠CDA=90°得,∠1+∠2=90°. 又∠2+∠3=90°,
∴∠3=∠1. 又∵∠CED=∠DOA =90°,
∴△CED ∽△DOA,
∴.
設(shè)D(0,c),則.
變形得,解之得.
綜合上述:在y軸上存在點(diǎn)D(0,3)或(0,1),
使△ACD是以AC為斜邊的直角三角形.
(3)①若點(diǎn)P在對(duì)稱軸右側(cè)(如圖①),
只能是△PCQ∽△CAH,得∠QCP=∠CAH.
延長(zhǎng)CP交x軸于M,∴AM=CM, ∴AM2=CM2.
設(shè)M(m,0),則( m+3)2=42+(m+1)2,∴m=2,即M(2,0).
設(shè)直線CM的解析式為y=k1x+b1,
則, 解之得,.
∴直線CM的解析式.
,
解得, (舍去).
.
∴.
②若點(diǎn)P在對(duì)稱軸左側(cè)(如圖②),
只能是△PCQ∽△ACH,得∠PCQ=∠ACH.
過(guò)A作CA的垂線交PC于點(diǎn)F,作FN⊥x軸于點(diǎn)N.
由△CFA∽△CAH得,
由△FNA∽△AHC得.
∴, 點(diǎn)F坐標(biāo)為(-5,1).
設(shè)直線CF的解析式為y=k2x+b2,則,解之得.
∴直線CF的解析式.
,
解得, (舍去).
∴.
∴滿足條件的點(diǎn)P坐標(biāo)為或
【解析】分析:(1)將A(﹣3,0)、B(1,0),代入求出即可,再利用平方法求出頂點(diǎn)坐標(biāo)即可;
(2)首先證明△CED∽△DOA,得出y軸上存在點(diǎn)D(0,3)或(0,1),即可得出△ACD是以AC為斜邊的直角三角形.
(3)首先求出直線CM的解析式為,再利用聯(lián)立兩函數(shù)解析式即可得出交點(diǎn)坐標(biāo),再利用若點(diǎn)P在對(duì)稱軸左側(cè)(如圖②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH得出答案即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com