【題目】在矩形ABCD中,AD=5,AB=4,點E,F(xiàn)在直線AD上,且四邊形BCFE為菱形.若線段EF的中點為點M,則線段AM的長為 .
【答案】5.5,或0.5
【解析】
試題分析:兩種情況:①由矩形的性質(zhì)得出CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,由菱形的性質(zhì)得出CF=EF=BE=BC=5,由勾股定理求出DF,得出MF,即可求出AM;②同①得出AE=3,求出ME,即可得出AM的長.
解:分兩種情況:①如圖1所示:
∵四邊形ABCD是矩形,
∴CD=AB=4,BC=AD=5,∠ADB=∠CDF=90°,
∵四邊形BCFE為菱形,
∴CF=EF=BE=BC=5,
∴DF===3,
∴AF=AD+DF=8,
∵M是EF的中點,
∴MF=EF=2.5,
∴AM=AF﹣DF=8﹣2.5=5.5;
②如圖2所示:同①得:AE=3,
∵M是EF的中點,
∴ME=2.5,
∴AM=AE﹣ME=0.5;
綜上所述:線段AM的長為:5.5,或0.5;
故答案為:5.5,或0.5.
科目:初中數(shù)學 來源: 題型:
【題目】下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題背景】
已知:l1∥l2∥l3∥l4,平行線l1與l2、l2與l3、l3與l4之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2,我們把四個頂點分別在l1、l2、l3、l4這四條平行線上的四邊形稱為“格線四邊形”.
【問題探究】
(1)如圖1,正方形ABCD為“格線四邊形”,則正方形ABCD的邊長為 .
(2)矩形ABCD為“格線四邊形”,其長:寬=2:1,求矩形ABCD的寬.
【問題拓展】
(3)如圖1,EG過正方形ABCD的頂點D且垂直l1于點E,分別交l2,l4于點F,G,將∠AEG繞點A順時針旋轉30°,得到∠AE′D′(如圖2),點D′在直線l3上,以AD′為邊在E′D′左側作菱形AB′C′D′,使B′C′,分別在直線l2,l4上,求菱形AB′C′D′的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明、小亮、小芳和兩個陌生人甲、乙同在如圖所示的地下車庫等電梯,已知兩個陌生人到1至4層的任意一層出電梯,并設甲在a層出電梯,乙在b層出電梯.
(1)小明想求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說:“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?若公平,說明理由;若不公平,請修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于點E.
(1)如圖1,連接EC,求證:△EBC是等邊三角形;
(2)點M是線段CD上的一點(不與點C,D重合),以BM為一邊,在BM的下方作∠BMG=60°,MG交DE延長線于點G.請你在圖2中畫出完整圖形,并直接寫出MD,DG與AD之間的數(shù)量關系;
(3)如圖3,點N是線段AD上的一點,以BN為一邊,在BN的下方作∠BNG=60°,NG交DE延長線于點G.試探究ND,DG與AD數(shù)量之間的關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算與化簡:
(1)|﹣2|+(﹣2)2﹣(﹣)﹣2﹣(π﹣7)0;
(2)[(﹣x﹣1y﹣2)﹣3﹣y(x2﹣x3y)]÷x2y;
(3)÷(﹣)3(﹣)2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:△ABC的周長為30cm,把△ABC的邊AC對折,使頂點C和點A重合,折痕交BC邊于點D,交AC邊與點E,連接AD,若AE=4cm,則△ABD的周長是( )
A. 22cm B. 20cm C. 18cm D. 15cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com