【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.
【答案】
(1)
證明:如圖1,
延長(zhǎng)ED交AG于點(diǎn)H,
∵點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),
∴OA=OD,OA⊥OD,
∵OG=OE,
在△AOG和△DOE中,
,
∴△AOG≌△DOE,
∴∠AGO=∠DEO,
∵∠AGO+∠GAO=90°,
∴∠GAO+∠DEO=90°,
∴∠AHE=90°,
即DE⊥AG
(2)
解:①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:
(Ⅰ)α由0°增大到90°過程中,當(dāng)∠OAG′=90°時(shí),
∵OA=OD= OG= OG′,
∴在Rt△OAG′中,sin∠AG′O= = ,
∴∠AG′O=30°,
∵OA⊥OD,OA⊥AG′,
∴OD∥AG′,
∴∠DOG′=∠AG′O=30°,
即α=30°;
(Ⅱ)α由90°增大到180°過程中,當(dāng)∠OAG′=90°時(shí),
同理可求∠BOG′=30°,
∴α=180°﹣30°=150°.
綜上所述,當(dāng)∠OAG′=90°時(shí),α=30°或150°.
②如圖3,當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時(shí),AF′的長(zhǎng)最大,
∵正方形ABCD的邊長(zhǎng)為1,
∴OA=OD=OC=OB= ,
∵OG=2OD,
∴OG′=OG= ,
∴OF′=2,
∴AF′=AO+OF′= +2,
∵∠COE′=45°,
∴此時(shí)α=315°.
【解析】(1)延長(zhǎng)ED交AG于點(diǎn)H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運(yùn)用等量代換證明∠AHE=90°即可;(2)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當(dāng)∠OAG′=90°時(shí),α=30°,α由90°增大到180°過程中,當(dāng)∠OAG′=90°時(shí),α=150°;②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時(shí),AF′的長(zhǎng)最大,AF′=AO+OF′= +2,此時(shí)α=315°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購(gòu)進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求,商家又用28800元購(gòu)進(jìn)了第二批這種襯衫,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)量的2倍,但單價(jià)貴了10元.
(1)該商家購(gòu)進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)不低于25%(不考慮其他因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,Rt△ABC中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長(zhǎng)線上一點(diǎn),且BD=1,連接DA,點(diǎn)P是射線DA上的動(dòng)點(diǎn).
(1)求證DA是⊙O的切線;
(2)DP的長(zhǎng)度為多少時(shí),∠BPC的度數(shù)最大,最大度數(shù)是多少?請(qǐng)說明理由.
(3)P運(yùn)動(dòng)的過程中,(PB+PC)的值能否達(dá)到最小,若能,求出這個(gè)最小值,若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點(diǎn)M在OC上,AM的延長(zhǎng)線交⊙O于點(diǎn)G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點(diǎn)N.
(1)求證:CF是⊙O的切線;
(2)求證:△ACM∽△DCN;
(3)若點(diǎn)M是CO的中點(diǎn),⊙O的半徑為4,cos∠BOC= ,求BN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E為對(duì)角線AC上一點(diǎn),且AE=AB,則∠BED的度數(shù)是度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
社會(huì)消費(fèi)品零售總額是指批發(fā)和零售業(yè),住宿和餐飲業(yè)以及其他行業(yè)直接售給城鄉(xiāng)居民和社會(huì)集團(tuán)的消費(fèi)品零售額,在各類與消費(fèi)有關(guān)的統(tǒng)計(jì)數(shù)據(jù)中,社會(huì)消費(fèi)品零售總額是表現(xiàn)國(guó)內(nèi)消費(fèi)需求最直接的數(shù)據(jù).
2012年,北京市全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額7702.8億元,比上一年增長(zhǎng)11.6%,2013年,全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額8375.1億元,比上一年增長(zhǎng)8.7%,2014年,全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額9098.1億元,比上一年增長(zhǎng)8.6%,2015年,全年實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額10338億元,比上一年增長(zhǎng)7.3%.
2016年,北京市實(shí)現(xiàn)市場(chǎng)總消費(fèi)19926.2億元,比上一年增長(zhǎng)了8.1%,其中實(shí)現(xiàn)服務(wù)性消費(fèi)8921.1億元,增長(zhǎng)10.1%;實(shí)現(xiàn)社會(huì)消費(fèi)品零售總額11005.1億元,比上一年增長(zhǎng)了6.5%.
根據(jù)以上材料解答下列問題:
(1)補(bǔ)全統(tǒng)計(jì)表:
2012﹣2016年北京市社會(huì)消費(fèi)品零售總額統(tǒng)計(jì)表
年份 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 |
社會(huì)消費(fèi)品零售總額(單位:億元) |
(2)選擇適當(dāng)?shù)慕y(tǒng)計(jì)圖將2012﹣2016年北京市社會(huì)消費(fèi)品零售總額比上一年的增長(zhǎng)率表示出來,并在圖中表明相應(yīng)數(shù)據(jù);
(3)根據(jù)以上信息,估計(jì)2017年北京市社會(huì)消費(fèi)品零售總額比上一年的增長(zhǎng)率約為 , 你的預(yù)估理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E在AB邊上,點(diǎn)F在BC邊的延長(zhǎng)線上,且AE=CF
(1)求證:△AED≌△CFD;
(2)將△AED按逆時(shí)針方向至少旋轉(zhuǎn)多少度才能與△CFD重合,旋轉(zhuǎn)中心是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種商品每件成本為20元,經(jīng)過市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時(shí)間t(天)的關(guān)系如下表:
時(shí)間t(天) | 1 | 3 | 5 | 10 | 36 | … |
日銷售量m(件) | 94 | 90 | 86 | 76 | 24 | … |
未來40天內(nèi),前20天每天的價(jià)格y1(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y1= t+25(1≤t≤20且t為整數(shù)),后20天每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為y2=﹣ t+40(21≤t≤40且t為整數(shù)).
下面我們就來研究銷售這種商品的有關(guān)問題:
(1)認(rèn)真分析上表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識(shí)確定一個(gè)滿足這些數(shù)據(jù)的m(件)與t(天)之間的表達(dá)式;
(2)請(qǐng)預(yù)測(cè)未來40天中哪一天的日銷售利潤(rùn)最大,最大日銷售利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com