【題目】如圖所示,Rt△ABC中,∠BAC=90°,∠C=30°,BC=2,⊙O是△ABC的外接圓,D是CB延長(zhǎng)線上一點(diǎn),且BD=1,連接DA,點(diǎn)P是射線DA上的動(dòng)點(diǎn).
(1)求證DA是⊙O的切線;
(2)DP的長(zhǎng)度為多少時(shí),∠BPC的度數(shù)最大,最大度數(shù)是多少?請(qǐng)說(shuō)明理由.
(3)P運(yùn)動(dòng)的過(guò)程中,(PB+PC)的值能否達(dá)到最小,若能,求出這個(gè)最小值,若不能,說(shuō)明理由.
【答案】
(1)證明:如圖,
連接AO,
∵∠=30°,
∴∠AOB=2∠C=60°
∴△ABO是等邊三角形,AB=BD=1,
∴∠ADC=∠DAB= ∠ABO=30°,
∵∠AOC=60°,
∴∠DAO=90°,
∴DA是⊙O的切線
(2)解:如圖1,
當(dāng)點(diǎn)P運(yùn)動(dòng)到A處時(shí),
即DP=DA= 時(shí),∠BPC的度數(shù)達(dá)到最大,為90°.
理由如下:若點(diǎn)P不在A處時(shí),不妨設(shè)點(diǎn)P在DA的延長(zhǎng)線上的時(shí),
連接BP,與⊙O交于一點(diǎn),記為點(diǎn)E,
連接CE,
則∠BPC<∠BEC=∠BAC=90°
(3)解:如圖2,
作點(diǎn)C關(guān)于射線DA的對(duì)稱點(diǎn)C′,
則BP+PC=BP+PC′,
當(dāng)點(diǎn)C′,P,B三點(diǎn)共線時(shí),(BP+PC′)的值達(dá)到最小,最小值為BC′.
過(guò)點(diǎn)C′作DC的垂線,垂足記為點(diǎn)H,連接DC′,
在Rt△DCP中,∠PDC=30°,
∴△DCC′為等邊三角形,
故H為DC的中點(diǎn),
∴BH=DH﹣DB= CD﹣DB= ﹣1= ,C'H= DH=
在Rt△BC'H中,根據(jù)勾股定理得,BC'= = .
∴(BP+PC)的最小值為 .
【解析】(1)先判斷出△ABO是等邊三角形,進(jìn)而得出∠ADC=30°,即可得出∠DAO=90°即可得出結(jié)論;(2)判斷出∠BPC最大時(shí)的點(diǎn)P的位置;(3)利用對(duì)稱性確定出PB+PC=BC'利用勾股定理計(jì)算即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論:①ac<0;②方程ax2+bx+c=0的兩根之和大于0;③y隨x的增大而增大;④a﹣b+c<0.其中正確的是( )
A.①②③
B.②③④
C.①③④
D.①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校計(jì)劃購(gòu)進(jìn)A,B兩種樹(shù)木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹(shù)木2棵,B種樹(shù)木5棵,共需600元;購(gòu)買A種樹(shù)木3棵,B種樹(shù)木1棵,共需380元.
(1)求A種,B種樹(shù)木每棵各多少元?
(2)因布局需要,購(gòu)買A種樹(shù)木的數(shù)量不少于B種樹(shù)木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹(shù)木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)
(1)請(qǐng)畫(huà)出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1;
(2)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|2x+b|(b為常數(shù))的圖象.若該圖象在直線y=2下方的點(diǎn)的橫坐標(biāo)x滿足0<x<3,則b的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解市民對(duì)全市創(chuàng)衛(wèi)工作的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在全市甲、乙兩個(gè)區(qū)內(nèi)進(jìn)行了調(diào)查統(tǒng)計(jì),將調(diào)查結(jié)果分為不滿意,一般,滿意,非常滿意四類,回收、整理好全部問(wèn)卷后,得到下列不完整的統(tǒng)計(jì)圖.
請(qǐng)結(jié)合圖中信息,解決下列問(wèn)題:
(1)求此次調(diào)查中接受調(diào)查的人數(shù).
(2)求此次調(diào)查中結(jié)果為非常滿意的人數(shù).
(3)興趣小組準(zhǔn)備從調(diào)查結(jié)果為不滿意的4位市民中隨機(jī)選擇2位進(jìn)行回訪,已知4位市民中有2位來(lái)自甲區(qū),另2位來(lái)自乙區(qū),請(qǐng)用列表或用畫(huà)樹(shù)狀圖的方法求出選擇的市民均來(lái)自甲區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB,OA=OB,點(diǎn)E在OB 上,四邊形AEBF是矩形.
(1)請(qǐng)你只用無(wú)刻度的直尺在圖中畫(huà)出∠AOB的平分線(保留畫(huà)圖痕跡);
(2)若∠AOB=45°,OA=OB=2 ,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com