如圖,△ABC中,AB=AC=2,∠B=∠C=40°.點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)(點(diǎn)D不與B、C重合),連接AD,作∠ADE=40°,DE交線(xiàn)段AC于E.
(1)當(dāng)∠BAD=20°時(shí),∠EDC=
20
20
°;
(2)當(dāng)DC等于多少時(shí),△ABD≌△DCE?試說(shuō)明理由;
(3)△ADE能成為等腰三角形嗎?若能,請(qǐng)直接寫(xiě)出此時(shí)∠BAD的度數(shù);若不能,請(qǐng)說(shuō)明理由.
分析:(1)利用三角形的外角的性質(zhì)得出答案即可;
(2)利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC得出∠BAD=∠EDC,進(jìn)而求出△ABD≌△DCE;
(3)根據(jù)等腰三角形的判定以及分類(lèi)討論得出即可.
解答:解:(1)∵∠BAD=20°,∠B=40°,
∴∠ADC=60°,
∵∠ADE=40°,
∴∠EDC=60°-40°=20°,
故答案為:20;

(2)當(dāng)DC=2時(shí),△ABD≌△DCE;
理由:∵∠ADE=40°,∠B=40°,
又∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC.
∴∠BAD=∠EDC.
在△ABD和△DCE中,
∠B=∠C
AB=DC
∠BAD=∠EDC

∴△ABD≌△DCE(ASA);

(3)當(dāng)∠BAD=30°時(shí),
∵∠B=∠C=40°,∴∠BAC=100°,
∵∠ADE=40°,∠BAD=30°,
∴∠DAE=70°,
∴∠AED=180°-40°-70°=70°,
∴DA=DE,這時(shí)△ADE為等腰三角形;  
當(dāng)∠BAD=60°時(shí),∵∠B=∠C=40°,∴∠BAC=100°,
∵∠ADE=40°,∠BAD=60°,∠DAE=40°,
∴EA=ED,這時(shí)△ADE為等腰三角形.
點(diǎn)評(píng):此題主要考查了全等三角形的判定與性質(zhì)和三角形內(nèi)角和定理以及等腰三角形的性質(zhì)等知識(shí),根據(jù)已知得出△ABD≌△DCE是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線(xiàn)上,CE是∠DCB的角平分線(xiàn),且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線(xiàn)BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線(xiàn)AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案