【題目】將拋物線c1 沿x軸翻折,得到拋物線c2 , 如圖1所示.

(1)請(qǐng)直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長度,平移后得到新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A、B;將拋物線c2向右也平移m個(gè)單位長度,平移后得到新拋物線的頂點(diǎn)為N,與x軸的交點(diǎn)從左到右依次為D、E.
①當(dāng)B、D是線段AE的三等分點(diǎn)時(shí),求m的值;②在平移過程中,是否存在以點(diǎn)A、N、E、M為頂點(diǎn)的四邊形是矩形的情形?若存在,請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說明理由.

【答案】
(1)

解:y= x2


(2)

解:①如圖1,令﹣ x2+ =0,得x1=﹣1,x2=1

則拋物線c1與x軸的兩個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),(1,0).

∴A(﹣1﹣m,0),B(1﹣m,0).

同理可得:D(﹣1+m,0),E(1+m,0).

當(dāng)AD= AE時(shí),

(﹣1+m)﹣(﹣1﹣m)= [(1+m)﹣(﹣1﹣m)],

∴m=

當(dāng)BD= AE時(shí),

(﹣1+m)﹣(1﹣m)= [(1+m)﹣(﹣1﹣m)],

∴m=2.

故當(dāng)B,D是線段AE的三等分點(diǎn)時(shí),m= 或2.

②存在.

理由:如圖2,連接AN,NE,EM,MA.

依題意可得:M(﹣m, ),N(m,﹣ ).

即M,N關(guān)于原點(diǎn)O對(duì)稱,

∴OM=ON.

∵A(﹣1﹣m,0),E(1+m,0),

∴A,E關(guān)于原點(diǎn)O對(duì)稱,

∴OA=OE

∴四邊形ANEM為平行四邊形.

∵AM2=(﹣m+1+m)2+( 2=4,

ME2=(1+m+m)2+( 2=4m2+4m+4,

AE2=(1+m+1+m)2=4m2+8m+4,

若AM2+ME2=AE2,則4+4m2+4m+4=4m2+8m+4,

∴m=1,

此時(shí)△AME是直角三角形,且∠AME=90°.

∴當(dāng)m=1時(shí),以點(diǎn)A,N,E,M為頂點(diǎn)的四邊形是矩形.


【解析】(1)根據(jù)翻折的性質(zhì)可求拋物線c2的表達(dá)式;(2)①求出拋物線c1與x軸的兩個(gè)交點(diǎn)坐標(biāo),分當(dāng)AD= AE時(shí),當(dāng)BD= AE時(shí)兩種情況討論求解;②存在.理由:如圖2,連接AN,NE,EM,MA.根據(jù)矩形的判定即可得出.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△AB C沿DE,EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數(shù)為( )

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩點(diǎn)在數(shù)軸上的位置如圖所示,其中O為原點(diǎn),點(diǎn)A對(duì)應(yīng)的有理數(shù)為﹣4,點(diǎn)B對(duì)應(yīng)的有理數(shù)為6.

(1)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).

①當(dāng)t=1時(shí),AP的長為   ,點(diǎn)P表示的有理數(shù)為   ;

②當(dāng)PB=2時(shí),求t的值;

(2)如果動(dòng)點(diǎn)P以每秒6個(gè)單位長度的速度從O點(diǎn)向右運(yùn)動(dòng),點(diǎn)AB分別以每秒1個(gè)單位長度和每秒3個(gè)單位長度的速度向右運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么經(jīng)過幾秒PA=2PB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)DE、F、G依次連結(jié),得到四邊形DEFG

1)求證:四邊形DEFG是平行四邊形;

2)若MEF的中點(diǎn),OM=3,∠OBC∠OCB互余,求DG的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的_____、_______、底邊上的高互相重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E,F(xiàn)在對(duì)角線AC上,且AE=CF.求證:

(1)DE=BF;

(2)四邊形DEBF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) A(x,y),若 xy=0,那么點(diǎn) A ___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:

1 2

3 4

5 6

7 8

9 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在義烏中小學(xué)生“我的中國夢(mèng)”讀書活動(dòng)中,某校對(duì)部分學(xué)生作了一次主題為“我最喜愛的圖書”的調(diào)查活動(dòng),將圖書分為甲、乙、丙、丁四類,學(xué)生可根據(jù)自己的愛好任選其中一類。學(xué)校根據(jù)調(diào)查情況進(jìn)行了統(tǒng)計(jì),并繪制了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖如圖。
“我最喜愛的圖書”各類人數(shù)統(tǒng)計(jì)圖

請(qǐng)你結(jié)合圖中信息,解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)被調(diào)查的學(xué)生中,最喜愛丁類圖書的有 名,最喜愛甲類圖書的人數(shù)占本次被調(diào)查人數(shù)的 %;
(3)在最喜愛丙類圖書的學(xué)生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學(xué)校共有學(xué)生1500名,請(qǐng)你估計(jì)該校最喜愛丙類圖書的女生和男生分別有多少名?

查看答案和解析>>

同步練習(xí)冊(cè)答案