【題目】如圖,⊙O的直徑AB為10cm,弦AC為6cm,
(1)用尺規(guī)作圖畫出∠ACB的平分線交⊙O于點D.(不要寫作法,保留作圖痕跡)
(2)分別連接點AD和BD,求弦BC、AD、BD的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)連接OC,若BD=BC,求OC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于C,D兩點,與x,y軸交于B,A兩點,CE⊥x軸于點E,且tan∠ABO=,OB=4,OE=1.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,AD=4cm,EF經(jīng)過對角線BD的中點O,分別交AD,BC于點E,F.
(1)求證:△BOF≌△DOE;
(2)當EF⊥BD時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC=10,BC=16,點D為BC邊上的動點(點D不與點B,C重合).以D為頂點作∠ADE=∠B,射線DE交AC邊于點E,過點A作AF⊥AD交射線DE于點F,連接CF.
(1)求證:△ABD∽△DCE;
(2)當DE∥AB時(如圖2),求AE的長;
(3)點D在BC邊上運動的過程中,是否存在某個位置,使得DF=CF?若存在,求出此時BD的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針旋轉(zhuǎn)60°到△的位置,連接,則的長為( )
A.2B.C.D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經(jīng)過點,將繞點順時針方向旋轉(zhuǎn)(),交于點,交于點,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐:
概念理解:將△ABC 繞點 A 按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為 θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼?/span> n 倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],: .
問題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得到△AB′C′,使點 B,C,C′在同一直線上,且四邊形 ABB′C′為矩形,求 θ 和 n 的值.
拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(知識回顧)
七年級學習代數(shù)式求值時,遇到這樣一類題“代數(shù)式ax﹣y+6+3x﹣5y﹣1的值與x的取值無關(guān),求a的值”,通常的解題方法是把x、y看作字母,a看作系數(shù)合并同類項,因為代數(shù)式的值與x的取值無關(guān),所以含x項的系數(shù)為0,即原式=(a+3)x﹣6y+5,所以a+3=0,則a=﹣3.
(理解應用)
(1)若關(guān)于x的多項式(2x﹣3)m+2m2﹣3x的值與x的取值無關(guān),試求m的值;
(2)若一次函數(shù)y=2kx+1﹣4k的圖象經(jīng)過某個定點,則該定點坐標為 ;
(能力提升)
(3)7張如圖1的小長方形,長為a,寬為b.按照圖2方式不重疊地放在大矩形ABCD內(nèi),大矩形中未被覆蓋的兩個部分(圖中陰影部分),設右上角的面積為S1,左下角的面積為S2,當AB的長變化時,S1﹣S2的值始終保持不變.求a與b的等量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com