【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點P是x軸上的一動點,當PA+PB最小時,求點P的坐標.
【答案】
(1)解:把A(1,4)代入y= ,得:m=4,
∴反比例函數(shù)的解析式為y=
(2)解:把B(4,n)代入y= ,得:n=1,
∴B(4,1),
把A(1,4)、(4,1)代入y=kx+b,得: ,
解得: ,
∴一次函數(shù)的解析式為y=﹣x+5
(3)解:作B的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,
∵B(4,1),
∴B′(4,﹣1),
設直線AB′的解析式為y=mx+n,
∴ ,解得 ,
∴直線AB′的解析式為y=﹣ x+ ,
令y=0,得﹣ x+ =0,
解得x= ,
∴點P的坐標為( ,0).
【解析】(1)將點A(1,4)代入反比例函數(shù)解析式可得其解析式;(2)先根據(jù)反比例函數(shù)解析式求得點B坐標,再由A、B坐標可得直線解析式;(3)作B的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,根據(jù)B的坐標求得B′的坐標,然后根據(jù)待定系數(shù)法求得直線AB′的解析式,進而求得與x軸的交點即可.
【考點精析】解答此題的關鍵在于理解軸對稱-最短路線問題的相關知識,掌握已知起點結點,求最短路徑;與確定起點相反,已知終點結點,求最短路徑;已知起點和終點,求兩結點之間的最短路徑;求圖中所有最短路徑.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 ABC ,C 90,AC<BC,D 為 BC 上一點,且到 A、B 兩點的距離相等.
(1)用直尺和圓規(guī),作出點 D 的位置(不寫作法,保留作圖痕跡);
(2)連結 AD,若 B 36 ,求∠CAD 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G.若BG=4,則△CEF的面積是( )
A. B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一樓房AB后有一假山,其坡度為i=1: ,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=25米,與亭子距離CE=20米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2.
(1)求實數(shù)k的取值范圍.
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABO的頂點A是雙曲線y1=與直線y2=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=.
(1)求這兩個函數(shù)的解析式;
(2)求△AOC的面積.
(3)直接寫出使y1>y2成立的x的取值范圍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)(概念理解)在平行四邊形、矩形、菱形、正方形中,一定是垂美四邊形的是___________.
(2)(性質探究)如圖2,試探索垂美四邊形ABCD的兩組對邊AB,CD與BC ,AD之間的數(shù)量關系,寫出證明過程。
(3)(問題解決)如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外做正方形ACFG和正方形ABDE,連接CE,BG,GE, 已知AC=,BC=1 求GE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com