【題目】如圖,Rt△ABO的頂點A是雙曲線y1=與直線y2=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且S△ABO=.
(1)求這兩個函數(shù)的解析式;
(2)求△AOC的面積.
(3)直接寫出使y1>y2成立的x的取值范圍
【答案】(1)y=﹣,y=﹣x+2;(2)4;(3)-1<x<0或x>3
【解析】(1)欲求這兩個函數(shù)的解析式,關(guān)鍵求k值.根據(jù)反比例函數(shù)性質(zhì),k絕對值為3且為負數(shù),由此即可求出k;
(2)由函數(shù)的解析式組成方程組,解之求得A、C的坐標,然后根據(jù)S△AOC=S△ODA+S△ODC即可求出;
(3)根據(jù)圖象即可求得.
解:(1)設(shè)A點坐標為(x,y),且x<0,y>0,
則S△ABO=|BO||BA|=(﹣x)y=,
∴xy=﹣3,
又∵y=,
即xy=k,
∴k=﹣3.
∴所求的兩個函數(shù)的解析式分別為y=﹣,y=﹣x+2;
(2)由y=﹣x+2,
令x=0,得y=2.
∴直線y=﹣x+2與y軸的交點D的坐標為(0,2),
∵A、C在反比例函數(shù)的圖象上,
∴,
解得 ,,
∴交點A(﹣1,3),C為(3,﹣1),
∴S△AOC=S△ODA+S△ODC=OD(|x1|+|x2|)=×2×(3+1)=4.
(3)-1<x<0或x>3 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地相距50單位長度。小李從A地出發(fā)去B地,以每分鐘2單位長度的速度行進,第一次他向左1單位長度,第二次他向右2單位長度,第三次再向左3單位長度,第四次又向右4單位長度,……,按此規(guī)律行進,如果A地在數(shù)軸上表示的數(shù)為-16.
(1)B地在數(shù)軸上表示的數(shù)為________________。
(2)若B地在原點的右側(cè),經(jīng)過第八次進行后,小李到達點P,此時點P與點B相距_____________單位長度,八次運動完成后一共經(jīng)過__________分鐘。
(3)若經(jīng)過n次(n為正整數(shù))行進后,小李到達點Q,在數(shù)軸上點Q表示的數(shù)如何表示?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“幸福是奮斗出來的”,在數(shù)軸上,若C到A的距離剛好是3,則C點叫做A的“幸福點”,若C到A、B的距離之和為6,則C叫做A、B的“幸福中心”
(1)如圖1,點A表示的數(shù)為﹣1,則A的幸福點C所表示的數(shù)應(yīng)該是 ;
(2)如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為4,點N所表示的數(shù)為﹣2,點C就是M、N的幸福中心,則C所表示的數(shù)可以是 (填一個即可);
(3)如圖3,A、B、P為數(shù)軸上三點,點A所表示的數(shù)為﹣1,點B所表示的數(shù)為4,點P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點P出發(fā),以2個單位每秒的速度向左運動,當經(jīng)過多少秒時,電子螞蟻是A和B的幸福中心?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= 的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點P是x軸上的一動點,當PA+PB最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市水果批發(fā)部門欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200元/時。其它主要參考數(shù)據(jù)如下:
運輸工具 | 途中平均速度(千米/時) | 運費(元/千米) | 裝卸費用(元) |
火車 | 100 | 15 | 2000 |
汽車 | 80 | 20 | 900 |
(1)如果汽車的總支出費用比火車費用多1100元,你知道本市與A市之間的路程是多少千米嗎?請你列方程解答.
(2)如果A市與某市之間的距離為S千米,且知道火車與汽車在路上耽誤的時間分別為2小時和3.1小時,你若是某市水果批發(fā)部門的經(jīng)理,要將這種水果從A市運往本市銷售。你將選擇哪種運輸方式比較合算呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+8x﹣6與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1 , 將C1向右平移得C2 , C2與x軸交于點B,D.若直線y=x+m與C1、C2共有3個不同的交點,則m的取值范圍是( )
A.﹣2<m<
B.﹣3<m<﹣
C.﹣3<m<﹣2
D.﹣3<m<﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸的交點坐標為(2,0),則下列說法:
①y隨x的增大而減;②b>0;③關(guān)于x的方程kx+b=0的解為x=2;④不等式kx+b>0的解集是x>2.
其中說法正確的有_________(把你認為說法正確的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知|a+3|與(b+1)2互為相反數(shù),a、b分別對應(yīng)數(shù)軸上的點A、B.
(1)求a、b的值.
(2)數(shù)軸上原點右側(cè)存在點C,設(shè)甲、乙、丙三個動點分別從A、B、C三點同時運動,甲、乙向數(shù)軸正方向運動,丙向數(shù)軸負方向運動,甲、乙、丙運動速度分別為1、、2(單位長度每秒),若它們在數(shù)軸上某處相遇,請求出C點對應(yīng)的數(shù)是多少?
(3)運用(2)中所求C點對應(yīng)的數(shù),若甲、乙、丙出發(fā)地及速度大小均不變,同時向數(shù)軸負方向運動,問丙先追上誰?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育場看臺的坡面AB與地面的夾角是37°,看臺最高點B到地面的垂直距離BC為3.6米,看臺正前方有一垂直于地面的旗桿DE,在B點用測角儀測得旗桿的最高點E的仰角為33°,已知測角儀BF的高度為1.6米,看臺最低點A與旗桿底端D之間的距離為16米(C,A,D在同一條直線上).
(1)求看臺最低點A到最高點B的坡面距離;
(2)一面紅旗掛在旗桿上,固定紅旗的上下兩個掛鉤G、H之間的距離為1.2米,下端掛鉤H與地面的距離為1米,要求用30秒的時間將紅旗升到旗桿的頂端,求紅旗升起的平均速度(計算結(jié)果保留兩位小數(shù))(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com