如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4).

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1

(2)寫出點(diǎn)A1的坐標(biāo);

(3)在x軸上找一點(diǎn)P,使PB+PC的和最。(biāo)出點(diǎn)P即可,不用求點(diǎn)P的坐標(biāo))


【考點(diǎn)】作圖-軸對稱變換;軸對稱-最短路線問題.

【分析】(1)作出各點(diǎn)關(guān)于y軸的對稱點(diǎn),再順次連接即可;

(2)根據(jù)點(diǎn)A1在坐標(biāo)系中的位置即可得出結(jié)論;

(3)作點(diǎn)B關(guān)于x軸的對稱點(diǎn)B′,連接B′C交x軸于點(diǎn)P,則點(diǎn)P即為所求.

【解答】解:(1)如圖所示:

(2)由圖可知,A1(﹣2,4);

(3)如圖所示,點(diǎn)P即為所求.

【點(diǎn)評】本題考查的是作圖﹣軸對稱變換,熟知關(guān)于y軸對稱的點(diǎn)的坐標(biāo)特點(diǎn)是解答此題的關(guān)鍵.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正三角形內(nèi)接于⊙O,動(dòng)點(diǎn)P在圓周的劣弧上,

   且不與A,B重合,則∠BPC等于

   A.        B.        C.         D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,∠C=90°,AB=10,tanB=,點(diǎn)M是AB邊的中點(diǎn),將△ABC繞著點(diǎn)M旋轉(zhuǎn),使點(diǎn)C與點(diǎn)A重合,點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)E重合,得到△DEA,且AE交CB于點(diǎn)P,那么線段CP的長是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


分解因式:ax2﹣9a= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計(jì)算:(1+(﹣2016)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分線,DE⊥AB于E.

(1)如圖1,連接CE,求證:△BCE是等邊三角形;

(2)如圖2,點(diǎn)M為CE上一點(diǎn),連結(jié)BM,作等邊△BMN,連接EN,求證:EN∥BC;

(3)如圖3,點(diǎn)P為線段AD上一點(diǎn),連結(jié)BP,作∠BPQ=60°,PQ交DE延長線于Q,探究線段PD,DQ與AD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如果點(diǎn)M(﹣2,y1),N(﹣1,y2)在拋物線y=﹣x2+2x上,那么下列結(jié)論正確的是( 。

A.y1<y2      B.y1>y2      C.y1≤y2       D.y1≥y2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=30cm,點(diǎn)A到地面的距離AD=8cm,旅行箱與水平面AE成60°角,求拉桿把手處C到地面的距離(精確到1cm).(參考數(shù)據(jù):

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知在△ABC中,CDAB邊上的高線,BE平分∠ABC,交CD于點(diǎn)E,BC=5,DE=2,則△BCE的面積等于(     )

A.10                        B.7                      C.5                  D.4

查看答案和解析>>

同步練習(xí)冊答案