【題目】當(dāng)x滿足條件 時(shí),求出方程x2﹣2x﹣4=0的根.
【答案】解:由 求得 ,則2<x<4.
解方程x2﹣2x﹣4=0可得x1=1+ ,x2=1﹣ ,∵2< <3,∴3<1+ <4,符合題意
∴x=1+ .
【解析】分別解出不等式中的每一個(gè)不等式,然后利用大小小大中間找得出求出不等式組的解積;然后解出方程x2﹣2x﹣4=0的解,然后根據(jù)x的取值范圍判斷即可。
【考點(diǎn)精析】掌握配方法和一元一次不等式組的解法是解答本題的根本,需要知道左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒(méi)問(wèn)題.左邊分解右合并,直接開(kāi)方去解題;解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒(méi)有公共部分,則這個(gè)不等式組無(wú)解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠BOP與OP上點(diǎn)C,點(diǎn)A(在A的左側(cè)),嘉嘉進(jìn)行如下作圖:
①以點(diǎn)O為圓心,OC為半徑畫(huà)弧,交OB于點(diǎn)D,連接CD
②以點(diǎn)A為圓心,OC為半徑畫(huà)弧MN,交AP于點(diǎn)M
③以點(diǎn)M為圓心,CD為半徑畫(huà)弧,交MN于點(diǎn)E,連接ME,作射線AE
如圖所示,則下列結(jié)論不成立的是( )
A. CD∥EM B. AE∥OB C. ∠ODC=∠AEM D. ∠OAE=∠BDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將圓心角都是90°的扇形OAB和扇形OCD疊放在一起,連接AC、BD.
(1)將△AOC經(jīng)過(guò)怎樣的圖形變換可以得到△BOD?
(2)若 的長(zhǎng)為πcm,OD=3cm,求圖中陰影部分的面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量校園內(nèi)一棵不可攀的樹(shù)的高度,數(shù)學(xué)應(yīng)用實(shí)踐小組做了如下的探索實(shí)踐:根據(jù)《物理學(xué)》中光的反射定律,利用一面鏡子和一根皮尺,設(shè)計(jì)如圖的測(cè)量方案:把鏡子放在離樹(shù)(AB)9米的點(diǎn)E處,然后沿著直線BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹(shù)梢頂點(diǎn)A,再用皮尺量得DE=2.7米,觀察者目高CD=1.8米,則樹(shù)(AB)的高度為米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)重要的著作之一,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.其中第九卷《勾股》主要講述了以測(cè)量問(wèn)題為中心的直角三角形三邊互求,之中記載了一道有趣的“引葭赴岸”問(wèn)題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”
譯文:“今有正方形水池邊長(zhǎng)為1丈,有棵蘆葦生長(zhǎng)在它長(zhǎng)出水面的部分為1尺.將蘆葦?shù)闹醒,向池岸牽引,恰好與水岸齊接.問(wèn)水深,蘆葦?shù)拈L(zhǎng)度分別是多少尺?”(備注:1丈=10尺)
如果設(shè)水深為尺,那么蘆葦長(zhǎng)用含的代數(shù)式可表示為_______尺,根據(jù)題意,可列方程為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點(diǎn)E、F分別在菱形的邊BC、CD上滑動(dòng),且E、F不與B、C、D重合.
(1)證明不論E、F在BC.CD上如何滑動(dòng),總有BE=CF;
(2)當(dāng)點(diǎn)E、F在BC.CD上滑動(dòng)時(shí),分別探討四邊形AECF的面積和△CEF的周長(zhǎng)是否發(fā)生變化?如果不變,求出這個(gè)定值;如果變化,求出最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小彬買(mǎi)了A、B兩種書(shū),單價(jià)分別是18元、10元.
(1)若兩種書(shū)共買(mǎi)了10本付款172元,求每種書(shū)各買(mǎi)了多少本?
(2)買(mǎi)10本時(shí)付款可能是123元嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)進(jìn)行社會(huì)調(diào)查,隨機(jī)抽查了某個(gè)地區(qū)的20個(gè)家庭的收入情況,并繪制了統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖給出的信息回答:
(1)填寫(xiě)完成下表:
年收入(萬(wàn)元) | 0.6 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 9.7 |
戶 數(shù) | 1 | 1 | 2 | 4 |
這20個(gè)家庭的年平均收入為 萬(wàn)元;
(2)樣本中的中位數(shù)是 萬(wàn)元,眾數(shù)是 萬(wàn)元;
(3)在平均數(shù)、中位數(shù)兩數(shù)中, 更能反映這個(gè)地區(qū)家庭的年收入水平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對(duì)角線AC,BD相交于點(diǎn)O,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對(duì)全等三角形.其中正確結(jié)論的個(gè)數(shù)是
A.4 B.3 C.2 D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com