【題目】某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種,下圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x(小時)變化的函數(shù)圖象,其中BC段是雙曲線y= 的一部分.請根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間有多少小時?
(2)求k的值;
(3)當(dāng)x=18時,大棚內(nèi)的溫度約為多少度?

【答案】
(1)解:恒溫系統(tǒng)在這天保持大棚溫度18℃的時間為10小時
(2)解:∵點(diǎn)B(12,18)在雙曲線y=上,

∴18=

解得:k=216


(3)解:當(dāng)x=18時,y=12,

所以當(dāng)x=18時,大棚內(nèi)的溫度約為12℃


【解析】(1)直接利用圖象得出恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間;(2)將(12,18)代入求出k的值即可;(3)當(dāng)x=18時,求出y=12,即可得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形EFGH是矩形ABCD的內(nèi)接矩形,且EF:FG=3:1,AB:BC=2:1,則tan∠AHE的值為(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD中,AB=4cm,AD=6cm,AF平分∠BAD,點(diǎn)C在AD上,BC⊥AF于點(diǎn)F.若點(diǎn)E是BD的中點(diǎn),則EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正六邊形ABCDEF在直角坐標(biāo)系內(nèi)的位置如圖所示,A(﹣2,0),點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過2015次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的弦BC長為8,點(diǎn)A是⊙O上一動點(diǎn),且∠BAC=45°,點(diǎn)D,E分別是BC,AB的中點(diǎn),則DE長的最大值是(

A.4
B.4
C.8
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=3,EC=1,則DE的長為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點(diǎn)A1 , A3 , A5 , A7 , A9的坐標(biāo)分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,點(diǎn)B的坐標(biāo)為(1,2),將△AOB沿x軸向右平移得到△A′O′B′,點(diǎn)B的對應(yīng)點(diǎn)B′恰好在函數(shù)y= (x>0)的圖象上,此時點(diǎn)A移動的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線m∥n,點(diǎn)C是直線m上一點(diǎn),點(diǎn)D是直線n上一點(diǎn),CD與直線m、n不垂直,點(diǎn)P為線段CD的中點(diǎn).

(1)操作發(fā)現(xiàn):直線l⊥m,l⊥n,垂足分別為A、B,當(dāng)點(diǎn)A與點(diǎn)C重合時(如圖①所示),連接PB,請直接寫出線段PA與PB的數(shù)量關(guān)系:
(2)猜想證明:在圖①的情況下,把直線l向上平移到如圖②的位置,試問(1)中的PA與PB的關(guān)系式是否仍然成立?若成立,請證明;若不成立,請說明理由.
(3)延伸探究:在圖②的情況下,把直線l繞點(diǎn)A旋轉(zhuǎn),使得∠APB=90°(如圖③所示),若兩平行線m、n之間的距離為2k.求證:PAPB=kAB.

查看答案和解析>>

同步練習(xí)冊答案