如圖,在鈍角△ABC中.
(1)作鈍角△ABC的高AM,CN;
(2)若CN=3,AM=6,求BC與AB之比.
【考點】作圖—復雜作圖;三角形的面積.
【專題】作圖題.
【分析】(1)過點A作AM⊥BC于M,過點C作CN⊥AB于N,則AM、BN為△ABC的高;
(2)根據(jù)三角形面積公式得到AM•BC=CN•AB,然后利用比例性質求BC與AB的比值.
【解答】解:(1)如圖,AM、CN為所作;
(2)∵AM、BN為△ABC的高,
∴S△ABC=AM•BC=CN•AB,
∴===.
【點評】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.
科目:初中數(shù)學 來源: 題型:
問題提出:求邊長分別為,,(a為正整數(shù))三角形的面積.
問題探究:為解決上述數(shù)學問題,我們采取數(shù)形結合和轉化的思想方法,并采取一般問題特殊化的策略來進行探究.
探究一:當a=1時,求邊長分別為、、三角形的面積.
先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出邊長分別為,,的格點三角形△ABC(如圖①).
因為AB是直角邊分別為2和1的Rt△ABE的斜邊,所以AB=;
因為BC是直角邊分別為1和3的Rt△BCF的斜邊,所以BC=;
因為AC是直角邊分別為3和2的Rt△ACG的斜邊,所以AC=;通過面積轉化,可間接求三角形△ABC的面積.
所以,S△ABC=S正方形EFCG﹣S△ABE﹣S△BCF﹣S△ACG.
(1)直接寫出圖①中S△ABC=__________.
探究二:當a=2時,求邊長分別為2,,5三角形的面積.
先畫一個長方形網(wǎng)格(每個小長方形的長為2,寬為1),再在網(wǎng)格中畫出邊長分別為2,,5的格點三角形△ABC(如圖②).
因為AB是直角邊分別為2和2的Rt△ABE的斜邊,所以AB=2;
因為BC是直角邊分別為1和6的Rt△BCF的斜邊,所以BC=;
因為AC是直角邊分別為3和4的Rt△ACG的斜邊,所以AC=5,通過面積轉化,可間接求三角形△ABC的面積.
所以,S△ABC=S正方形EFCG﹣S△ABE﹣S△BCF﹣S△ACG
(2)直接寫出圖②中S△ABC=__________.
探究三:當a=3時,求邊長分別為,,3三角形的面積.
仿照上述方法解答下列問題:
(3)畫的長方形網(wǎng)格中,每個小長方形的長應是__________.
(4)邊長分別為,,3的三角形的面積為__________.
問題解決:求邊長分別為,,(a為正整數(shù))三角形的面積.
(5)類比上述方法畫長方形網(wǎng)格,每個小長方形的長應是__________.
(6)邊長分別為,,(a為正整數(shù))的三角形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,小敏做了一個角平分儀ABCD,其中AB=AD,BC=DC.將儀器上的點A與∠PRQ的頂點R重合,調整AB和AD,使它們分別落在角的兩邊上,過點A,C畫一條射線AE,AE就是∠PRQ的平分線.此角平分儀的畫圖原理是:根據(jù)儀器結構,可得
△ABC≌△ADC,這樣就有∠QAE=∠PAE.則說明這兩個三角形全等的依據(jù)是( )
A.SAS B.ASA C.AAS D.SSS
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知:點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點O在邊BC上,求證:AB=AC;
(2)如圖2,若點O在△ABC的內部,求證:AB=AC;
(3)若點O在△ABC的外部,AB=AC成立嗎?請畫出圖表示.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com