【題目】計(jì)算:( 3+(﹣1)2017+ ﹣3sin60°.

【答案】解:原式=8﹣1+2+ ﹣3× =9﹣
【解析】先利用負(fù)整數(shù)指數(shù)冪和特殊角的三角函數(shù)值計(jì)算,再分母有理化,然后合并即可.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用整數(shù)指數(shù)冪的運(yùn)算性質(zhì)和二次根式的混合運(yùn)算的相關(guān)知識(shí)可以得到問題的答案,需要掌握aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));二次根式的混合運(yùn)算與實(shí)數(shù)中的運(yùn)算順序一樣,先乘方,再乘除,最后加減,有括號(hào)的先算括號(hào)里的(或先去括號(hào)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 ;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到了“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正n邊形(n為整數(shù),且n≥4)繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°后,發(fā)現(xiàn)旋轉(zhuǎn)前后兩圖形有另一交點(diǎn)O,連接AO,我們稱AO為“疊弦”;再將“疊弦”AO所在的直線繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后,交旋轉(zhuǎn)前的圖形于點(diǎn)P,連接PO,我們稱∠OAB為正n邊形的“疊弦角”,△AOP為“疊弦三角形”.以下說法,正確的是 . (填番號(hào))
①在圖1中,△AOB≌△AOD';
②在圖2中,正五邊形的“疊弦角”的度數(shù)為360°;
③“疊弦三角形”不一定都是等邊三角形; ④正n邊形的“疊弦角”的度數(shù)為60°﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊AB是⊙O的直徑,點(diǎn)C在⊙O上,已知AC=6cm,BC=8cm,點(diǎn)P、Q分別在邊AB、BC上,且點(diǎn)P不與點(diǎn)A、B重合,BQ=kAP(k>0),聯(lián)接PC、PQ.
(1)求⊙O的半徑長(zhǎng);
(2)當(dāng)k=2時(shí),設(shè)AP=x,△CPQ的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果△CPQ與△ABC相似,且∠ACB=∠CPQ,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄的是今年長(zhǎng)江某一周內(nèi)的水位變化情況,這一周的上周末的水位已達(dá)到警戒水位米(正號(hào)表示水位比前一天上升,負(fù)號(hào)表示水位比前一天下降).

星期

水位

變化(米)

+0.2

-0.4

+0.3

(1)本周哪一天長(zhǎng)江的水位最高?位于警戒水位之上還是之下?

(2)與上周周末相比,本周周末長(zhǎng)江的水位是上升了還是下降了?并通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AC為對(duì)角線,E是邊AD上一點(diǎn),BE⊥AC交AC于點(diǎn)F,BE、CD的延長(zhǎng)線交于點(diǎn)G,且∠ABE=∠CAD.
(1)求證:四邊形ABCD是矩形;
(2)如果AE=EG,求證:AC2=BCBG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)EG

(1)若∠AFH60°,∠CHF50°,則∠EOF_____度,∠FOH_____度.

(2)若∠AFH+CHF100°,求∠FOH的度數(shù).

(拓展)如圖②,∠AFH和∠CHI的平分線交于點(diǎn)O,EG經(jīng)過點(diǎn)O且平行于FH,分別與AB、CD交于點(diǎn)E、G.若∠AFH+CHFα,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)初二年級(jí)抽取部分學(xué)生進(jìn)行跳繩測(cè)試,并規(guī)定:每分鐘跳90次以下的為不及格;每分鐘跳90~99次的為及格;每分鐘100~109次的為中等;每分鐘110~119次的為良好;每分鐘120次及以上的為優(yōu)秀。測(cè)試結(jié)果整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖。請(qǐng)根據(jù)圖中信息,解答下列各題:

(1)參加這次跳繩測(cè)試的共有人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“中等”部分所對(duì)的圓心角的度數(shù)是;
(4)如果該校初二年級(jí)的總?cè)藬?shù)是480人,根據(jù)此統(tǒng)計(jì)數(shù)據(jù),請(qǐng)你估算出該校初二年級(jí)跳繩成績(jī)?yōu)椤皟?yōu)秀”的人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩條拋物線的頂點(diǎn)相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:y2=﹣x2+mx+n為“友好拋物線”.

(1)求拋物線C2的解析式.
(2)點(diǎn)A是拋物線C2上在第一象限的動(dòng)點(diǎn),過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點(diǎn)為C,點(diǎn)B的坐標(biāo)為(﹣1,4),問在C2的對(duì)稱軸上是否存在點(diǎn)M,使線段MB繞點(diǎn)M逆時(shí)針旋轉(zhuǎn)90°得到線段MB′,且點(diǎn)B′恰好落在拋物線C2上?若存在求出點(diǎn)M的坐標(biāo),不存在說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案