【題目】若兩條拋物線的頂點相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:y2=﹣x2+mx+n為“友好拋物線”.
(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉(zhuǎn)90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.
【答案】
(1)
解:∵y1=﹣2x2+4x+2=﹣2(x﹣1)2+4,
∴拋物線C1的頂點坐標為(1,4).
∵拋物線C1與C2頂點相同,
∴ =1,﹣1+m+n=4.
解得:m=2,n=3.
∴拋物線C2的解析式為y2=﹣x2+2x+3
(2)
解:如圖1所示:
設(shè)點A的坐標為(a,﹣a2+2a+3).
∵AQ=﹣a2+2a+3,OQ=a,
∴AQ+OQ=﹣a2+2a+3+a=﹣a2+3a+3=﹣(a﹣ )2+ .
∴當a= 時,AQ+OQ有最大值,最大值為
(3)
解:如圖2所示;連接BC,過點B′作B′D⊥CM,垂足為D.
∵B(﹣1,4),C(1,4),拋物線的對稱軸為x=1,
∴BC⊥CM,BC=2.
∵∠BMB′=90°,
∴∠BMC+∠B′MD=90°.
∵B′D⊥MC,
∴∠MB′D+∠B′MD=90°.
∴∠MB′D=∠BMC.
在△BCM和△MDB′中, ,
∴△BCM≌△MDB′.
∴BC=MD,CM=B′D.
設(shè)點M的坐標為(1,a).則B′D=CM=4﹣a,MD=CB=2.
∴點B′的坐標為(a﹣3,a﹣2).
∴﹣(a﹣3)2+2(a﹣3)+3=a﹣2.
整理得:a2﹣7a+10=0.
解得a=2,或a=5.
當a=2時,M的坐標為(1,2),
當a=5時,M的坐標為(1,5).
綜上所述當點M的坐標為(1,2)或(1,5)時,B′恰好落在拋物線C2上
【解析】(1)先求得y1頂點坐標,然后依據(jù)兩個拋物線的頂點坐標相同可求得m、n的值;(2)設(shè)A(a,﹣a2+2a+3).則OQ=x,AQ=﹣a2+2a+3,然后得到OQ+AQ與a的函數(shù)關(guān)系式,最后依據(jù)配方法可求得OQ+AQ的最值;(3)連接BC,過點B′作B′D⊥CM,垂足為D.接下來證明△BCM≌△MDB′,由全等三角形的性質(zhì)得到BC=MD,CM=B′D,設(shè)點M的坐標為(1,a).則用含a的式子可表示出點B′的坐標,將點B′的坐標代入拋物線的解析式可求得a的值,從而得到點M的坐標.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為( )
A.115°
B.120°
C.130°
D.140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB、CD為 O的直徑,弦AE//CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使 PED= C.
(1)求證:PE是 O的切線;
(2)求證:ED平分 BEP;
(3)若 O的半徑為5,CF=2EF,求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).下列結(jié)論:
①ac<0;
②4a﹣2b+c>0;
③拋物線與x軸的另一個交點是(4,0);
④點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2 . 其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我省某工藝廠為全運會設(shè)計了一款成本為每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價x(元/件)的一次函數(shù)。當售價為22元/件時,每天銷售量為780件;當售價為25元/件時,每天銷售量為750件。
(1)求y與x的函數(shù)關(guān)系式;
(2)如果該工藝品售價最高不超過每件30元,那么售價定為每件多少元時,工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?(利潤=售價-成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(A2013防城港)如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下: 甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷( 。
A.甲正確,乙錯誤
B.乙正確,甲錯誤
C.甲、乙均正確
D.甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,AB=4,BC=5,∠ABC=60°,對角線AC,BD交于點O,過點O作OE⊥AD,則OE等于( )
A.
B.2
C.2
D.2.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com