如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E.
(1)求證:AB·AF=CB·CD;
(2)已知AB=15 cm,BC=9 cm,P是射線DE上的動點.設DP=x cm(),四邊形BCDP的面積為y cm2
①求y關于x的函數(shù)關系式;
②當x為何值時,△PBC的周長最小,并求出此時y的值.

證明:(1)∵,,∴DE垂直平分AC,
,∠DFA=∠DFC =90°,∠DAF=∠DCF.
∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,
∴∠DCF=∠DAF=∠B.
∴△DCF∽△ABC.
,即
∴AB·AF=CB·CD.
(2)解:①∵AB=15,BC=9,∠ACB=90°,
,∴
).
②∵BC=9(定值),∴△PBC的周長最小,就是PB+PC最。桑1)知,點C關于直線DE的對稱點是點A,∴PB+PC=PB+PA,故只要求PB+PA最。
顯然當P、A、B三點共線時PB+PA最。
此時DP=DE,PB+PA=AB.
由(1),,得△DAF∽△ABC.
EF∥BC,得,EF=
∴AF∶BC=AD∶AB,即6∶9=AD∶15.
∴AD=10.
Rt△ADF中,AD=10,AF=6,
∴DF=8.

∴當時,△PBC的周長最小,此時

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案