如圖①,△ABC中,∠ABC=∠ACB,D是底邊BC上的一點;
(1)在AC上取一點E,畫△ADE,使∠ADE=∠AED=50°,∠2=20°,求∠1的度數(shù);
(2)如圖①,將題(1)中的條件“使∠ADE=∠AED=50°,∠2=20°”改為“∠ADE=∠AED”,試猜想:∠1與∠2的數(shù)量關(guān)系,并說明理由;
(3)如圖②,延長AD到F,連結(jié)BF、FC,使∠ABF=∠AFB,∠AFC=∠ACF,試猜想:∠1與∠2、∠3與∠4之間的關(guān)系,并選其中一個進行證明.
分析:(1)求出∠C,求出∠BAC,求出∠DAE,代入∠1=∠BAC-∠DAC求出即可.
(2)根據(jù)三角形外角性質(zhì)求出∠ADC=∠1+∠B,∠AED=∠2+∠C,即可求出答案.
(3)∠1=2∠2,根據(jù)三角形內(nèi)角和定理求出∠ACF和∠ACB,根據(jù)∠2=∠ACF-∠ACB求出即可.
解答:解:(1)∵∠AED=∠2+∠C,∠ADE=∠AED=50°,∠2=20°,
∴∠C=30°,∠DAC=180°-∠ADE-∠AED=80°,
∵∠ABC=∠ACB,
∴∠ABC=30°
∴∠BAC=180°-30°-30°=120°,
∴∠1=∠BAC-∠DAC=120°-80°=40°;

(2)∵∠2+∠ACB=∠AED,∠1+∠B=∠2+∠ADE,∠ADE=∠AED,
∴∠2+∠ACB=∠1+∠B-∠2,
∵∠B=∠ACB,
∴∠2=∠1-∠2,
∴∠1=2∠2;

(3)∠3=2∠4,∠1=2∠2,
證明:如圖2,∵∠ACF+∠AFC+∠FAC=180°,∠ABC+∠ACB+∠BAC=180°,∠AFC=∠ACF,∠ABC=∠ACB,
∴∠ACF=
1
2
(180°-∠FAC)=90°-
1
2
∠3,∠ACB=
1
2
(180°-∠BAC)=90°-
1
2
(∠1+∠3),
∴∠2=∠ACF-∠ACB=(90°-
1
2
∠3)-(90°-
1
2
∠1-
1
2
∠3)=
1
2
∠1,
即∠1=2∠2.
點評:本題考查了三角形內(nèi)角和定理和三角形外角性質(zhì)的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,在△ABC中,AB=AC,AD是△ABC的平分線,DE⊥AB,DF⊥AC,垂足分別是E,F(xiàn).則下面結(jié)論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點到B、C兩點距離相等;④圖中共有3對全等三角形,正確的有:
①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm的速度向點A運動,點Q從點A同時出發(fā)以每秒2cm的速度向點C運動,其中一個動點到達端點時,另一個動點也隨之停止運動,當(dāng)△APQ是等腰三角形時,運動的時間是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠BAC=100°,MP、NO分別垂直平分AB、AC,求∠1,∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求證:△DEH∽△BCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,DC是斜邊AB上的中線,EF過點C且平行于AB.若∠BCF=35°,則∠ACD的度數(shù)是( 。
A、35°B、45°C、55°D、65°

查看答案和解析>>

同步練習(xí)冊答案