(2008•梅州)如圖,四邊形ABCD是平行四邊形.O是對(duì)角線(xiàn)AC的中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)EF分別交AB、DC于點(diǎn)E、F,與CB、AD的延長(zhǎng)線(xiàn)分別交于點(diǎn)G、H.
(1)寫(xiě)出圖中不全等的兩個(gè)相似三角形(不要求證明);
(2)除AB=CD,AD=BC,OA=OC這三對(duì)相等的線(xiàn)段外,圖中還有多對(duì)相等的線(xiàn)段,請(qǐng)選出其中一對(duì)加以證明.

【答案】分析:(1)由平行四邊形的性質(zhì)可判斷△AEH與△DFH、△AEH∽與△BEG、△BEG∽△CFG、△DFH∽△CFG,任選一對(duì)即可;
(2)由平行四邊形的性質(zhì)可證△AOE≌△COF,則OE=OF.
解答:解:(1)△AEH與△DFH、△AEH與△BEG(2分)
(△BEG與△CFG,或△DFH與△CFG)

(2)OE=OF.(3分)
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AO=CO.(4分)
∴∠EAO=∠FCO.(5分)
∵∠AOE=∠COF,(6分)
∴△AOE≌△COF.(7分)
∴OE=OF.(8分)
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì)及相似三角形的判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:解答題

(2008•梅州)如圖所示,直線(xiàn)L與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別是A(-3,0),B(0,4),O是坐標(biāo)系原點(diǎn).
(1)求直線(xiàn)L所對(duì)應(yīng)的函數(shù)的表達(dá)式;
(2)若以O(shè)為圓心,半徑為R的圓與直線(xiàn)L相切,求R的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年云南省保山市隆陽(yáng)區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線(xiàn)為x軸,過(guò)D且垂直于AB的直線(xiàn)為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、D、C三點(diǎn)的拋物線(xiàn)的解析式及其對(duì)稱(chēng)軸L;
(3)若P是拋物線(xiàn)的對(duì)稱(chēng)軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)P有幾個(gè)?(不必求點(diǎn)P的坐標(biāo),只需說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年云南省楚雄州雙柏縣中考數(shù)學(xué)模擬試卷2(教研室 郎紹波)(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線(xiàn)為x軸,過(guò)D且垂直于AB的直線(xiàn)為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、D、C三點(diǎn)的拋物線(xiàn)的解析式及其對(duì)稱(chēng)軸L;
(3)若P是拋物線(xiàn)的對(duì)稱(chēng)軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)P有幾個(gè)?(不必求點(diǎn)P的坐標(biāo),只需說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年廣東省梅州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4.以AB所在直線(xiàn)為x軸,過(guò)D且垂直于AB的直線(xiàn)為y軸建立平面直角坐標(biāo)系.
(1)求∠DAB的度數(shù)及A、D、C三點(diǎn)的坐標(biāo);
(2)求過(guò)A、D、C三點(diǎn)的拋物線(xiàn)的解析式及其對(duì)稱(chēng)軸L;
(3)若P是拋物線(xiàn)的對(duì)稱(chēng)軸L上的點(diǎn),那么使△PDB為等腰三角形的點(diǎn)P有幾個(gè)?(不必求點(diǎn)P的坐標(biāo),只需說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年廣東省梅州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•梅州)如圖所示,直線(xiàn)L與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別是A(-3,0),B(0,4),O是坐標(biāo)系原點(diǎn).
(1)求直線(xiàn)L所對(duì)應(yīng)的函數(shù)的表達(dá)式;
(2)若以O(shè)為圓心,半徑為R的圓與直線(xiàn)L相切,求R的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案