【題目】在正方形中,點(diǎn)是邊上的動(dòng)點(diǎn),連接.
(1)如圖1,點(diǎn)在的延長(zhǎng)線上,且.
①求證:;
②如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到對(duì)應(yīng),射線交于,交于,連接,試探究與之間的數(shù)量關(guān)系.
(2)如圖3,若,點(diǎn)是邊上的動(dòng)點(diǎn),且,連接,直接寫(xiě)出的最小值.
【答案】(1)①詳見(jiàn)解析;②詳見(jiàn)解析;(2)
【解析】
(1)①欲證明DF=BE,只要證明△BCE≌△DCF(SAS)即可.
②證明△DCJ∽△FMJ,推出,推出△JMC∽△JFD,可得,推出DF=2CM可得結(jié)論.
(2)如圖3中,連接AE,延長(zhǎng)BC到T,使得CT=BC,連接AT.想辦法證明DF=AE,BE=ET,推出DF+BE=AE+ET.根據(jù)AE+ET≥AT,利用勾股定理求出AT即可解決問(wèn)題.
(1)①證明:如圖1中,
∵四邊形ABCD是正方形,
∴BC=CD,∠BCD=∠DCF=90°,
∵CE=CF,
∴△BCE≌△DCF(SAS),
∴BE=DF.
②解:結(jié)論:HG=2CM.
理由:如圖2中,設(shè)DH交BC于J.
∵∠DCG=30°,∠DCF=90°,
∴∠GCF=120°,
∵CG=CF,
∴∠CFG=∠CGF=30°,
∵CD=CH,∠DCH=120°,
∴∠CDH=∠CHD=30°,
∵∠DCJ=90°,
∴∠DJC=60°,DJ=2CJ
∴∠JMF=90°,
∵∠DJC=∠FJM,∠DCJ=∠FMJ,
∴△DCJ∽△FMJ,
∴,
∵∠MJC=∠FJD,
∴△JMC∽△JFD,
∴,
∴DF=2CM,
∵HG=DF,
∴HG=2CM.
(2)如圖3中,連接AE,延長(zhǎng)BC到T,使得CT=BC,連接AT.
∵四邊形ABCD是正方形,
∴AD=DC,∠ADE=∠DCF=∠ABT=90°,
∵CF+CE=2=CD=CE+DE,
∴DE=CF,
∴△ADE≌△DCF(SAS),
∴AE=DF,
∵CD⊥BT,CB=CT,
∴EB=ET,
∴DF+BE=AE+ET,
∵AE+ET≥AT,AT=,
∴DF+BE=AE+ET≥,
∴DF+BE的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線CD交⊙O于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線PD交CA的延長(zhǎng)線于點(diǎn)P,過(guò)點(diǎn)A作AE⊥CD于點(diǎn)E,過(guò)點(diǎn)B作BF⊥CD于點(diǎn)F.
(1)求證:DP∥AB;
(2)試猜想線段AE、EF、BF之間的數(shù)量關(guān)系,并加以證明;
(3)若AC=6,BC=8,求線段PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是ABC的邊AB上一點(diǎn),⊙O經(jīng)過(guò)點(diǎn)A、C,交AB于點(diǎn)D.過(guò)點(diǎn)C作CE⊥AB,垂足為E.連接CD,CD恰好平分∠BCE.
(1)求證:直線BC是⊙O的切線;
(2)若⊙O的半徑為3,CD=2,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種花卉,若購(gòu)進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購(gòu)進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.
(1)求購(gòu)進(jìn)甲、乙兩種花卉,每盆各需多少元?
(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來(lái)購(gòu)進(jìn)這兩種花卉,考慮到顧客需求,要求購(gòu)進(jìn)乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過(guò)甲種花卉數(shù)量的8倍,那么該花店共有幾種購(gòu)進(jìn)方案?在所有的購(gòu)進(jìn)方案中,哪種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,.過(guò)點(diǎn)A作AD//BC,與的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與⊙O交于點(diǎn)F.
(1)求證:AD是⊙O的切線
(2)求證:
(3)若BC=2,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時(shí)發(fā)現(xiàn)忘帶手機(jī),此時(shí)離上班時(shí)間還有23分鐘,于是他立刻步行回家取手機(jī),隨后騎電瓶車返回學(xué)校.已知李老師騎電瓶車到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開(kāi)門(mén)、取手機(jī)、啟動(dòng)電瓶車等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請(qǐng)你判斷李老師能否按時(shí)上班,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】寒梅中學(xué)為了豐富學(xué)生的課余生活,計(jì)劃購(gòu)買圍棋和中國(guó)象棋供棋類興趣小組活動(dòng)使用,若購(gòu)買3副圍棋和5副中國(guó)象棋需用98元;若購(gòu)買8副圍棋和3副中國(guó)象棋需用158元;(1)求每副圍棋和每副中國(guó)象棋各多少元;(2)寒梅中學(xué)決定購(gòu)買圍棋和中國(guó)象棋共40副,總費(fèi)用不超過(guò)550元,那么寒梅中學(xué)最多可以購(gòu)買多少副圍棋?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過(guò)A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);
(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求△ACQ的面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com