【題目】某校部分住校生放學(xué)后到學(xué)校開水房打水,每人接水2升,他們先同時打開兩個放水龍頭,后來因故障關(guān)閉一個放水龍頭,假設(shè)前后兩人接水間隔時間忽略不計(jì),且不發(fā)生潑灑,鍋爐內(nèi)的余水量m(升)與接水時間t(分)的函數(shù)關(guān)系圖象如圖所示,請結(jié)合圖象,回答下列問題:
(1)請直接寫出m與t之間的函數(shù)關(guān)系式: .
(2)前15位同學(xué)接水結(jié)束共需要幾分鐘?
(3)小敏說“今天我們寢室的8位同學(xué)去開水房連續(xù)接完水恰好用了3分鐘.”你說可能嗎?請說明理由.
【答案】
(1)m=
(2)解:前15位同學(xué)接完水后余水量為96﹣15×2=66(升),
∴66=﹣4t+88,
∴t=5.5.
答:前15位同學(xué)接水結(jié)束共需要5.5分鐘;
(3)解:有可能,
設(shè)t分鐘時8位同學(xué)開始連續(xù)接水,3分鐘剛好接完,由題意,得
∵0≤t≤2時每分鐘的出水量為:(96﹣80)÷2=8升,
t>2時每分鐘的出水量為:(80﹣72)÷2=4升.
8(2﹣t)+4[3﹣(2﹣t)]=8×2,
解得:t=1.
答:1分鐘時8位同學(xué)開始連續(xù)接水,3分鐘剛好接完.
【解析】解:(1)設(shè)0≤t≤2時m與t的函數(shù)關(guān)系式為m=k1t+b1 , t>2時,m與t的函數(shù)關(guān)系式為m=k2t+b2 , 由題意,得
, ,
解得 , ,
因此0≤t≤2時m與t的函數(shù)關(guān)系式為m=﹣8t+96,
t>2時,m與t的函數(shù)關(guān)系式為m=﹣4t+88.
即m= ;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A. 選舉中,人們通常最關(guān)心的數(shù)據(jù)是眾數(shù)
B. 數(shù)據(jù)6、4、2、2、1的平均數(shù)是3
C. 數(shù)據(jù)3、5、4、1、-2的中位數(shù)是3
D. “打開電視機(jī),中央一套正在播廣告”是必然事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀填空:請你閱讀芳芳的說理過程并填出理由:
(1)如圖1,已知AB∥CD.
求證:∠BAE+∠DCE=∠AEC.
理由:作EF∥AB,則有EF∥CD()
∴∠1=∠BAE,∠2=∠DCE()
∴∠AEC=∠1+∠2=∠BAE+∠DCE()
思維拓展:
(2)如圖2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直線交于點(diǎn)E,若∠FAE=m°,∠ABC=n°,求∠BED的度數(shù).(用含m、n的式子表示)
(3)將圖2中的線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,得到圖3,直接寫出∠BED的度數(shù)是(用含m、n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計(jì)螺絲大小,其中相鄰兩螺絲的距離依次為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任意兩個螺絲間的距離的最大值為( 。
A.6
B.7
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料,并完成相應(yīng)的任務(wù):
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并成為三大數(shù)學(xué)王子.
阿拉伯Al﹣Binmi(973﹣1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.下面是運(yùn)用“截長法”證明CD=AB+BD的部分證明過程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M是的中點(diǎn),∴MA=MC.
…
任務(wù):
(1)請按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知等邊△ABC內(nèi)接于⊙O,AB=2,D為上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長為半徑畫弧,分別交AC,AB于點(diǎn)M、N,再分別以點(diǎn)M、N為圓心,大于 MN的長為半徑畫弧,兩弧交于點(diǎn)P,作射線AB交邊BC于點(diǎn)D,若CD=4,AB=15,則△ABD的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,n),B(2,﹣4)是一次函數(shù)和反比例函數(shù)的圖象的兩個交點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出方程的解;
(3)求△AOB的面積;
(4)觀察圖象,直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=ax+b與反比例函數(shù)(x>0)的圖象交于A(1,4),B(4,n)兩點(diǎn),與x軸、y軸分別交于C、D兩點(diǎn).
(1)m= ,n= ;若M(,),N(,)是反比例函數(shù)圖象上兩點(diǎn),且0<<,則 (填“<”或“=”或“>”);
(2)若線段CD上的點(diǎn)P到x軸、y軸的距離相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為直徑,D.E為圓上兩點(diǎn),C為圓外一點(diǎn),且∠E+∠C=90°.
(1)求證:BC為⊙O的切線.
(2)若sinA=,BC=6,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com