【題目】不等式 的解集在數(shù)軸上表示為(
A.
B.
C.
D.

【答案】C
【解析】解:解不等式2x﹣1≥1,得:x≥1,
解不等式x﹣2<0,得:x<2,
∴不等式組的解集為:1≤x<2,
故選:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解不等式的解集在數(shù)軸上的表示(不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實(shí)心圓點(diǎn),不等于用空心圓圈),還要掌握一元一次不等式組的解法(解法:①分別求出這個(gè)不等式組中各個(gè)不等式的解集;②利用數(shù)軸表示出各個(gè)不等式的解集;③找出公共部分;④用不等式表示出這個(gè)不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個(gè)不等式組無解 ( 此時(shí)也稱這個(gè)不等式組的解集為空集 ))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點(diǎn)E,過點(diǎn)E作BE的垂線交AB于點(diǎn)F,⊙O是△BEF的外接圓.

(1)求證:AC是⊙O的切線;
(2)過點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,若∠ABC=70°,∠ACB=40°,則∠BOC=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在△ABC中,∠ABC=90,點(diǎn)O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D.E.F是垂足,且AB=17,BC=15,則OF、OE、OD的長度分別是( )

A. 2,2,2 B. 3,3,3 C. 4,4,4 D. 5,5,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15,那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對居民用水的影響工程指揮部最終決定該工程由甲、乙隊(duì)合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)切圓的三個(gè)切點(diǎn)分別為D、E、F,∠A=75°,∠B=45°,則圓心角∠EOF=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)從2011年開始,組織全民健身活動(dòng),結(jié)合社區(qū)條件,開展了廣場舞、太極拳、羽毛球和跑步四個(gè)活動(dòng)項(xiàng)目,現(xiàn)將參加項(xiàng)目活動(dòng)總?cè)藬?shù)進(jìn)行統(tǒng)計(jì),并繪制成每年參加總?cè)藬?shù)折線統(tǒng)計(jì)圖和2015年各活動(dòng)項(xiàng)目參與人數(shù)的扇形統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖解答下列題

(1)2015年比2011年增加人;
(2)請根據(jù)扇形統(tǒng)計(jì)圖求出2015年參與跑步項(xiàng)目的人數(shù);
(3)組織者預(yù)計(jì)2016年參與人員人數(shù)將比2015年的人數(shù)增加15%,名各活動(dòng)項(xiàng)目參與人數(shù)的百分比與2016年相同,請根據(jù)以上統(tǒng)計(jì)結(jié)果,估計(jì)2016年參加太極拳的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題情境】

課外興趣小組活動(dòng)時(shí),老師提出了如下問題:

如圖①,ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD至點(diǎn)E,使DEAD,連接BE.請根據(jù)小明的方法思考:

(1)由已知和作圖能得到ADC≌△EDB,依據(jù)是

A.SSS B.SAS C.AAS D.HL

(2)由三角形的三邊關(guān)系可求得AD的取值范圍是

解后反思:題目中出現(xiàn)中點(diǎn)”、“中線等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.

【初步運(yùn)用】

如圖②ADABC的中線,BEACE,交ADF,且AEEF.若EF=3,EC=2,求線段BF的長.

【靈活運(yùn)用】

如圖③,在ABC中, A=90°,DBC中點(diǎn), DEDFDEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在紙上畫了四個(gè)點(diǎn),如果把這四個(gè)點(diǎn)彼此連接,連成一個(gè)圖形,則這個(gè)圖形中會(huì)有_____個(gè)三角形出現(xiàn).

查看答案和解析>>

同步練習(xí)冊答案