已知二次函數(shù)99象過點A(5,-1),B(1,1),C(-1,2),求此二次函數(shù)9解析式.
設(shè)拋物線解析式為y=ax2+bx+c,
將A(x,-1),B(1,1),C(-1,2)代入得:
c=-1
a+b+c=1
a-b+c=2

解得:
a=
2
b=-
1
2
c=-1
,
則拋物線解析式為y=
2
x2-
1
2
x-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用“?”定義一種新運算:對于任意實數(shù)m,n和拋物線y=-ax2,當(dāng)y=ax2?(m,n)后都可以得到y(tǒng)=a(x-m)2+n.例如:當(dāng)y=2x2?(3,4)后都可以得到y(tǒng)=2(x-3)2+4.若函數(shù)y=x2?(1,n)得到的函數(shù)如圖所示,則n=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸相交于點E,點B(-1,0),P是AC上的一個動點(P與點A、C不重合)
(1)求點A、E的坐標(biāo);
(2)若y=-
6
3
7
x2+bx+c過點A、E,求拋物線的解析式;
(3)連接PB、PD,設(shè)L為△PBD的周長,當(dāng)L取最小值時,求點P的坐標(biāo)及L的最小值,并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線經(jīng)過坐標(biāo)原點O及A(-2
3
,0),其頂點為B(m,3),C是AB中點,點E是直線OC上的一個動點(點E與點O不重合),點D在y軸上,且EO=ED.
(1)求此拋物線及直線OC的解析式;
(2)當(dāng)點E運動到拋物線上時,求BD的長;
(3)連接AD,當(dāng)點E運動到何處時,△AED的面積為
3
3
4
?請直接寫出此時E點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如如在直角坐標(biāo)系中,二次函數(shù)y=x2-4x+中的頂點是C,與x軸相交于A,B兩點(A在B的左邊).
(1)若點B的橫坐標(biāo)xB滿足5<xB<c,求中的取值范圍;
(2)若tan∠ACB=
4
,求中的值;
(十)當(dāng)中=c時,點D,E同時從點B出發(fā),分別向左、向右在拋物線它移動,點D,E在x軸它的正投影分別為M,N,設(shè)BM=m(m<cB),BN=n,當(dāng)m,n滿足怎樣的等量關(guān)系時,△cDE的內(nèi)心在x軸它?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=x2+(b-1)x+c經(jīng)過點P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點坐標(biāo);
(3)若b>3,過點P作直線PA⊥y軸,交y軸于點A,交拋物線于另一點B,且BP=2PA,求這條拋物線所對應(yīng)的二次函數(shù)關(guān)系式.(提示:請畫示意圖思考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=kx+2與x軸交于點A,與y軸交于點B,與拋物線y=ax2+bx交于點C、D.已知點C的坐標(biāo)為(2,1),點D的橫坐標(biāo)為
1
2

(1)求點D的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式;
(3)拋物線在x軸上方部分是否存在一點P,使△POA的面積比△POB的面積大4?如果存在,求出點P的坐標(biāo);如果不存在,說明理由.
(4)將題中的拋物線y=ax2+bx沿x軸平移,當(dāng)拋物線經(jīng)過點B時,請直接寫出平移的方向和距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
3
4
x2+bx+c與坐標(biāo)軸交于A、B、C三點,A點的坐標(biāo)為(-1,0),過點C的直線y=
3
4t
x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.
(1)填空:點C的坐標(biāo)是______,b=______,c=______;
(2)求線段QH的長(用含t的式子表示);
(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某校八年級(1)班共有學(xué)生50人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是a元.經(jīng)測算和市場調(diào)查,若該班學(xué)生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成,一部分是購買純凈水的費用,另一部分是其它費用780元,其中,純凈水的銷售價x(元/桶)與年購買總量y(桶)之間滿足如圖所示關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若該班每年需要純凈水380桶,且a為120時,請你根據(jù)提供的信息分析一下:該班學(xué)生集體改飲桶裝純凈水與個人買飲料,哪一種花錢更少?
(3)當(dāng)a至少為多少時,該班學(xué)生集體改飲桶裝純凈水一定合算從計算結(jié)果看,你有何感想?(不超過30字)

查看答案和解析>>

同步練習(xí)冊答案