如圖,△ABC中,∠B=∠C,F(xiàn)D⊥BC,DE⊥AB,垂足分別為D、E,∠AFD=158°.求:
(1)∠C的度數(shù);
(2)∠EDF的度數(shù).
分析:(1)根據(jù)垂直的定義和三角形外角的性質(zhì)可求∠C的度數(shù);
(2)先根據(jù)等腰三角形等邊對(duì)等角的性質(zhì)得到∠B=∠C,利用等角的余角相等和已知角可求出∠EDB的數(shù),從而可求得∠EDF的度數(shù).
解答:解:(1)∵FD⊥BC于點(diǎn)D,
∴∠FDC=90°,
∴∠C=∠AFD-∠FDC=158°-90°=68°
答:∠C等于68°.

(2)∵DE⊥AB于點(diǎn)E,
∴∠DEB=90°,
∵∠B=∠C=68°,
∴∠BDE=90°-∠B=22°,
∴∠EDF=180°-∠BDE-∠FDC=180°-22°-90°=68°.
答:∠DEF等于68°.
點(diǎn)評(píng):本題綜合考查等腰三角形及三角形外角性質(zhì)等知識(shí).一般是利用等腰三角形的性質(zhì)得出有關(guān)角的度數(shù),進(jìn)而求出所求角的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案