(2004•本溪)已知正六邊形的邊長為10cm,則它的邊心距為( )
A.cm
B.5cm
C.5cm
D.10cm
【答案】分析:已知正六邊形的邊長為10cm,欲求邊心距,可通過邊心距、邊長的一半和內(nèi)接圓半徑構造直角三角形,通過解直角三角形得出.
解答:解:如圖,
∵在正六邊形中,OA=OB=AB,
∴在Rt△AOG中,OA=AB=10,∠AOG=30°,
∴OG=OA•cos30°=10×=5
故選C.
點評:本題考查學生對正多邊形的概念掌握和計算的能力.解答此題的關鍵是根據(jù)正六邊形的性質,證出△OAB為正三角形,再利用正三角形的性質解答.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年遼寧省部分市中考數(shù)學試卷(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經(jīng)過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圓》(08)(解析版) 題型:填空題

(2004•本溪)已知,兩圓半徑分別為4cm和2cm,圓心距為10cm,則兩圓的內(nèi)公切線的長為    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:填空題

(2004•本溪)已知圓O的直徑為6cm,如果直線l上的一點C到圓心O的距離為3cm,則直線l與圓O的位置關系是   

查看答案和解析>>

同步練習冊答案