【題目】如圖,點(diǎn)P為△ABC的內(nèi)心,延長AP交△ABC的外接圓⊙O于D,過D作DE∥BC,交AC的延長線于E點(diǎn).①則直線DE與⊙O的位置關(guān)系是_____;②若AB=4,AD=6,CE=3,則DE=_____.
【答案】相切
【解析】
①連接OD,根據(jù)內(nèi)心的性質(zhì)得到∠BAD=∠DAE,再根據(jù)圓周角的推論得到,利用垂徑定理得到OD⊥BC,而DE∥BC,即可得到OD⊥DE;
②連接BD,DC,由BC∥DE,得到∠E=∠ACB,∠BCD=∠CDE,根據(jù)同弧所對的圓周角相等得到∠ACB=∠ADB,∠BCD=∠BAD,因此∠E=∠ADB,∠CDE=∠BAD,得到△CDE∽△BAD,則,而AB=4,AD=6,CE=3,BD=DC,先計(jì)算出CD,再計(jì)算出DE.
解:①連OD,如圖,
∵點(diǎn)P為△ABC的內(nèi)心,
∴∠BAD=∠DAE,
∴,
∴OD⊥BC,
而DE∥BC,
∴OD⊥DE,
∴DE是⊙O的切線;
②連BD,DC,如圖,
則BD=CD,
∵BC∥DE,
∴∠E=∠ACB,∠BCD=∠CDE,
而∠ACB=∠ADB,∠BCD=∠BAD,
∴∠E=∠ADB,∠CDE=∠BAD,
∴△CDE∽△BAD,
∴
而AB=4,AD=6,CE=3,BD=CD,
∴,
∴CD=2,則DE=3.
故答案為:相切;3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解2014屆某校男生報(bào)考泉州市中考體育測試項(xiàng)目的意向,某校課題研究小組從畢業(yè)年段各班男生隨機(jī)抽取若干人組成調(diào)查樣本,根據(jù)收集整理到的數(shù)據(jù)繪制成以下不完全統(tǒng)計(jì)圖.根據(jù)以上信息,解答下列問題:
(1)該小組采用的調(diào)查方式是____________,被調(diào)查的樣本容量是_______;
(2)請補(bǔ)充完整圖中的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(請標(biāo)上百分率)(百分率精確到1%);
(3)該校共有600名初三男生,請估計(jì)報(bào)考A類的男生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,D在CB上,E為AB之中點(diǎn),AD、CE相交于F,且AD=DB.若∠B=20°,則∠DFE=( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個(gè)正方體骰子的表面展開圖,請根據(jù)要求回答問題:
(1)如果1點(diǎn)在上面,3點(diǎn)在左面,幾點(diǎn)在前面?
(2)如果5點(diǎn)在下面,幾點(diǎn)在上面?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點(diǎn)A在反比例函數(shù)y1=(x>0)的圖象上.點(diǎn)A與點(diǎn)A關(guān)于點(diǎn)O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點(diǎn)A.
(1)設(shè)a=2,點(diǎn)B(4,2)在函數(shù)y1,y2的圖象上.
①分別求函數(shù)y1,y2的表達(dá)式;
②直接寫出使y1>y2>0成立的x的范圍.
(2)如圖,設(shè)函數(shù)y1,y2的圖象相交于點(diǎn)B,點(diǎn)B的橫坐標(biāo)為3a,△AA′B的面積為16,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ABC為直角,以AB為直徑作⊙O交AC于點(diǎn)D,點(diǎn)E為BC中點(diǎn),連結(jié)DE,DB.
(1)求證:DE與⊙O相切;
(2)若∠C=30°,求∠BOD的度數(shù);
(3)在(2)的條件下,若⊙O半徑為2, 求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為4cm,E,F(xiàn)分別為邊DC,BC上的點(diǎn),BF=1cm,CE=2cm,BE,DF相交于點(diǎn)G,求四邊形CEGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=38°.
(1)如圖①,若D為弧AB的中點(diǎn),求∠ABC和∠ABD的大。
(2)如圖②,過點(diǎn)D作⊙O的切線,與AB的延長線交于點(diǎn)P,若DP∥AC,求∠OCD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,⊿ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)P,PD⊥AC于點(diǎn)D.
(1)求證:PD是⊙O的切線.
(2)若∠CAB=120°,AB=2,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com