閱讀下列材料后回答問(wèn)題:
在平面直角坐標(biāo)系中,已知x軸上的兩點(diǎn)A(x
1,0),B(x
2,0)的距離記作|AB|=|x
1-x
2|,如果A(x
1,y
1),B(x
2,y
2)是平面上任意兩點(diǎn),我們可以通過(guò)構(gòu)造直角三角形來(lái)求A、B間的距離.
如圖,過(guò)A、B兩點(diǎn)分別向x軸、y軸作垂線AM
1、AN
1和BM
2、BN
2,垂足分別記作M
1(x
1,0),N
1(0,y
1)、M
2(x
2,0),N
2(0,y
2),直線AN
1與BM
2交于Q點(diǎn).
在Rt△ABQ中,|AB|
2=|AQ|
2+|QB|
2,∵|AQ|=|M
1M
2|=|x
2-x
1|,|BQ|=|N
1N
2|=|y
2-y
1|
∴|AB|
2=|x
2-x
1|2+|y
2-y
1|
2由此得任意兩點(diǎn)A(x
1,y
1),B(x
2,y
2)之間的距離公式:|AB|=
如果某圓的圓心為(0,0),半徑為r.設(shè)P(x,y)是圓上任一點(diǎn),根據(jù)“圓上任一點(diǎn)到定點(diǎn)(圓心)的距離都等于定長(zhǎng)(半徑)”,我們不難得到|PO|=r,即
=r,整理得:x
2+y
2=r
2.我們稱此式為圓心在
原點(diǎn),半徑為r的圓的方程.
(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式,求點(diǎn)A(1,-3),B(-2,1)之間的距離;
(2)如果圓心在點(diǎn)P(2,3),半徑為3,求此圓的方程.
(3)方程x
2+y
2-12x+8y+36=0是否是圓的方程?如果是,求出圓心坐標(biāo)與半徑.