【題目】在平面直角坐標(biāo)系中,點(diǎn)A(5,6)與點(diǎn)B關(guān)于x軸對稱則點(diǎn)B的坐標(biāo)為( )

A. (5,6) B. (-5,-6) C. (-5,6) D. (5,-6)

【答案】D

【解析】

根據(jù)“關(guān)于x軸對稱的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)”即可解答.

∵點(diǎn)A(5,6)與點(diǎn)B關(guān)于x軸對稱,

∴點(diǎn)B的坐標(biāo)是(5,-6).

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的周長為 13cm,其中一邊長為 3cm,則該等腰三角形的底邊長為()

A. 7 B. 3 C. 7 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A10),B0,3)兩點(diǎn),對稱軸是x=1

1)求拋物線對應(yīng)的函數(shù)關(guān)系式;

2)動點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個單位長度的速度在線段OA上運(yùn)動,同時動點(diǎn)MO點(diǎn)出發(fā)以每秒3個單位長度的速度在線段OB上運(yùn)動.過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動的時間為t

當(dāng)t為何值時,四邊形OMPQ為矩形;

②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C

(1)求拋物線的解析式;

(2)設(shè)拋物線的對稱軸與x軸交于點(diǎn)M,問在對稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;

(3)如圖②,若點(diǎn)E為第二象限拋物線上一動點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型企業(yè)為了保護(hù)環(huán)境,準(zhǔn)備購買A、B兩種型號的污水處理設(shè)備共8臺,用于同時治理不同成分的污水,若購買A型2臺、B型3臺需54萬,購買A型4臺、B型2臺需68萬元.

(1)求出A型、B型污水處理設(shè)備的單價;

(2)經(jīng)核實,一臺A型設(shè)備一個月可處理污水220噸,一臺B型設(shè)備一個月可處理污水190噸,如果該企業(yè)每月的污水處理量不低于1565噸,請你為該企業(yè)設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)(-2,-3)向上平移3個單位長度,則平移后的點(diǎn)的坐標(biāo)為( )

A. (-2,0) B. (-2,1) C. (0,-2) D. (1,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列說法中,正確的是

A如果兩個三角形全等,則它們必是關(guān)于直線成軸對稱的圖形

B如果兩個三角形關(guān)于某直線成軸對稱,那么它們是全等三角形

C等腰三角形是關(guān)于底邊中線成軸對稱的圖形

D一條線段是關(guān)于經(jīng)過該線段中點(diǎn)的直線成軸對稱的圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索與計算:

在△ABC中,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,連接DE.

(1)如圖1,若∠A=45°,AB=AC,BC=4,求DE的長.

(2)如圖2,若∠A=60°,AB與AC不相等,BC=4,求DE的長.

猜想與證明:

(3)根據(jù)(1)(2)所求出的結(jié)果,猜想DE、BC以及∠A之間的數(shù)量關(guān)系,并證明.

拓展與應(yīng)用:

(4)如圖3,在△ABC中,AB=BC=5,AC=2,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,AF⊥BC于點(diǎn)F,求△DEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在BC、AB、AC邊上,且BE=CF,BD=CE.

(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);
(3)△DEF可能是等腰直角三角形嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案