【題目】探索與計(jì)算:
在△ABC中,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,連接DE.
(1)如圖1,若∠A=45°,AB=AC,BC=4,求DE的長(zhǎng).
(2)如圖2,若∠A=60°,AB與AC不相等,BC=4,求DE的長(zhǎng).
猜想與證明:
(3)根據(jù)(1)(2)所求出的結(jié)果,猜想DE、BC以及∠A之間的數(shù)量關(guān)系,并證明.
拓展與應(yīng)用:
(4)如圖3,在△ABC中,AB=BC=5,AC=2,BE⊥AC于點(diǎn)E,CD⊥AB于點(diǎn)D,AF⊥BC于點(diǎn)F,求△DEF的周長(zhǎng).
【答案】(1) DE=2;(2) DE =2;(3) DE=BCcosA,證明見(jiàn)解析;(4) △DEF的周長(zhǎng)=.
【解析】試題分析:(1)根據(jù)等腰直角三角形的性質(zhì)得到AE=BE=AB,根據(jù)相似三角形的判定定理得到△ADE∽△ABC,根據(jù)相似三角形的性質(zhì)計(jì)算;
(2)根據(jù)直角三角形的性質(zhì)得到AE=AB,AD=AC,根據(jù)相似三角形的判定定理得到△ADE∽△ACB,根據(jù)相似三角形的性質(zhì)計(jì)算;
(3)根據(jù)余弦的概念、相似三角形的判定和性質(zhì)解答;
(4)根據(jù)(3)的結(jié)論、三角形的面積公式、勾股定理計(jì)算即可.
試題解析:
(1)∵BE⊥AC,∠A=45°,
∴AE=BE=AB,
同理,AD=CD=AC,
∵AB=AC,
∴AE=AD,
∴=,又∠A=∠A,
∴△ADE∽△ABC,
∴==,
∴DE=2;
(2)∵BE⊥AC,∠A=60°,
∴AE=AB,
同理,AD=AC,
∴=,又∠A=∠A,
∴△ADE∽△ACB,
∴=,
∴DE=BC=2;
(3)猜想:DE=BCcosA.
證明:∵BE⊥AC,
∴cosA=,
∴AE=ABcosA,
同理,AD=ACcosA,
∴∴△ADE∽△ACB,
∴=cosA,
∴DE=BCcosA;
(4)∵AB=BC=5,AC=2,BE⊥AC,
∴AE=EC=,
由勾股定理得,BE==2,
∵BC×AF=AC×BE,
∴AF=4,
由勾股定理得,BF=3,
∴cos∠ABC==,cos∠ACB=cos∠BAC=,
∴EF=DE=ABcos∠ACB=,DF=ACcos∠ABC=,
∴△DEF的周長(zhǎng)=DE+EF+DF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列線(xiàn)段能構(gòu)成三角形的是( 。
A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(5,6)與點(diǎn)B關(guān)于x軸對(duì)稱(chēng),則點(diǎn)B的坐標(biāo)為( )
A. (5,6) B. (-5,-6) C. (-5,6) D. (5,-6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線(xiàn)相等,則稱(chēng)這個(gè)四邊形為等對(duì)角線(xiàn)四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出你所學(xué)過(guò)的特殊四邊形中是等對(duì)角線(xiàn)四邊形的兩種圖形的名稱(chēng);
(2)探究:當(dāng)?shù)葘?duì)角線(xiàn)四邊形中兩條對(duì)角線(xiàn)所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線(xiàn)的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一辦公樓CD,當(dāng)光線(xiàn)與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高3米的影子CE;而當(dāng)光線(xiàn)與地面的夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C有30米的距離(B、F、C在一條直線(xiàn)上).現(xiàn)要在A、E之間掛一些彩旗,求A、E之間的距離.(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈,精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x2+6x+m2是一個(gè)完全平方式,則m的值為( )
A. 3 B. -3 C. ±3 D. 以上都不對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(x2+x﹣1)(px+2)的乘積中,不含x2項(xiàng),則p的值是( )
A.1
B.0
C.﹣1
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市今年中考理化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個(gè)化學(xué)試驗(yàn)(用紙簽D、E、F表示)中各抽取一個(gè)實(shí)驗(yàn)操作進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).用列表或畫(huà)樹(shù)狀圖的方法求小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,點(diǎn)E是AB邊上一動(dòng)點(diǎn)(不含端點(diǎn)A、B),連接CE,過(guò)點(diǎn)B作CE的垂線(xiàn)交直線(xiàn)CE于點(diǎn)F,交直線(xiàn)CD于點(diǎn)G(如圖①).
(1)求證:AE=CG;
(2)若點(diǎn)E運(yùn)動(dòng)到線(xiàn)段BD上時(shí)(如圖②),試猜想AE、CG的數(shù)量關(guān)系是否發(fā)生變化,請(qǐng)直接寫(xiě)出你的結(jié)論;
(3)過(guò)點(diǎn)A作AH垂直于直線(xiàn)CE,垂足為點(diǎn)H,并交CD的延長(zhǎng)線(xiàn)于點(diǎn)M(如圖③),找出圖中與BE相等的線(xiàn)段,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com