如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°.

(1)求證:△ABD∽△DCE;

(2)若BD=3,CE=2,求△ABC的邊長.

 

【答案】

(1)證明見試題解析;(2)9.

【解析】

試題分析:(1)由∠ADE=60°,可證得△ABD∽△DCE;可用等邊三角形的邊長表示出DC的長,

(2)由(1)根據(jù)相似三角形的對應邊成比例,求得△ABC的邊長.

試題解析:(1)∵△ABC是等邊三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=AB﹣3;∴∠BAD+∠ADB=120°,∵∠ADE=60°,∴∠ADB+∠EDC=120°,∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE;

(2)∵△ABD∽△DCE,∴,∴,解得AB=9.

考點:1.相似三角形的判定與性質(zhì);2.等邊三角形的性質(zhì).

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=3,CE=2,則△ABC的面積為(  )
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點,延長BC到點E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點,且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習冊答案