如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點P從A點出發(fā),以cm/s的速度,沿AC向C作勻速運動;與此同時,點Q也從A點出發(fā),以1cm/s的速度,沿射線AB作勻速運動.當P運動到C點時,P、Q都停止運動.設點P運動的時間為ts.
(1)當P異于A.C時,請說明PQ∥BC;
(2)以P為圓心、PQ長為半徑作圓,請問:在整個運動過程中,t為怎樣的值時,⊙P與邊BC分別有1個公共點和2個公共點?
解:(1)∵四邊形ABCD是菱形,且菱形ABCD的邊長為2,
∴AB=BC=2,∠BAC=∠DAB。
又∵∠DAB=60°,∴∠BAC=∠BCA=30°。
如圖1,連接BD交AC于O。
∵四邊形ABCD是菱形,
∴AC⊥BD,OA=AC。
∴OB=AB=1!郞A=,AC=2OA=2。
運動ts后,AP=t,AO=t,∴。
又∵∠PAQ=∠CAB,∴△PAQ∽△CAB.∴∠APQ=∠ACB.
∴PQ∥BC.
(2)如圖2,⊙P與BC切于點M,連接PM,則PM⊥BC。
在Rt△CPM中,∵∠PCM=30°,∴PM=。
由PM=PQ=AQ=t,即=t,解得t=,
此時⊙P與邊BC有一個公共點。
如圖3,⊙P過點B,此時PQ=PB,
∵∠PQB=∠PAQ+∠APQ=60°
∴△PQB為等邊三角形!郠B=PQ=AQ=t。∴t=1。
∴當時,⊙P與邊BC有2個公共點。
如圖4,
⊙P過點C,此時PC=PQ,即 =t
∴t=。
∴當1≤t≤時,⊙P與邊BC有一個公共點。
當點P運動到點C,即t=2時,Q、B重合,⊙P過點B,
此時,⊙P與邊BC有一個公共點。
綜上所述,當t=或1≤t≤或t=2時,⊙P與菱形ABCD的邊BC有1個公共點;當時,⊙P與邊BC有2個公共點。
【解析】直線與圓的位置關系,菱形的性質,含30°角直角三角形的性質,相似三角形的判定和性質,平行的判定,切線的性質,等邊三角形的判定和性質。
【分析】(1)連接BD交AC于O,構建直角三角形AOB.利用菱形的對角線互相垂直、對角線平分對角、鄰邊相等的性質推知△PAQ∽△CAB;然后根據(jù)“相似三角形的對應角相等”證得∠APQ=∠ACB;最后根據(jù)平行線的判定定理“同位角相等,兩直線平行”可以證得結論。
(2)分⊙P與BC切于點M,⊙P過點B,⊙P過點C和點P運動到點C四各情況討論即可。
科目:初中數(shù)學 來源: 題型:
A、sinα=
| ||
B、cosα=
| ||
C、tanα=
| ||
D、tanα=
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
3 |
3 |
32 |
3 |
32 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com