【題目】如圖,矩形 ABCD 的對角線 AC BD 交于點 O,點 E AD 上,且 DE=CD,連接 OE,BE ABE ACB ,若 AE=2,則 OE 的長為___________

【答案】

【解析】

作∠ACB的平分線CGBEG,ACBE交于點F,首先證明CBCFAFAE2,然后在RtABC中利用勾股定理構(gòu)建方程求出DECDAB6,BCCFAD8,BDAC10,過點EEHBDH,證明EHDBAD,利用相似三角形的性質(zhì)求出EHDH,進而可得OH,再利用勾股定理求OE即可.

解:作∠ACB的平分線CGBEGACBE交于點F,

ABEACB,GCBACB

ABEGCB

ABE+∠EBC90°,

GCB+∠GBC90°

CGBE,

CG平分∠ACB,

CBCF,

∴∠FBC=∠BFC=∠AFE,

ADBC

∴∠AEF=∠FBC,

∴∠AEF=∠AFE,

AFAE2,

設(shè)DECDABx,則BCCFADx+2ACx+2+2x+4,

RtABC中,AB2+BC2AC2,即x2+(x+2)2(x+4)2

解得:x6(負(fù)值已舍去),

DECDAB6,BCCFAD8,BDAC10,

過點EEHBDH

∵∠EHD=∠BAD,∠EDH=∠BDA

∴△EHD∽△BAD,

,即,

,,

OHODDHBDDH,

,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB、AC為圓O的弦,連接CO并延長,交AB于點D,且∠ADC=2C;

1)如圖1,求證:AD=CO;

2)如圖2,取弧BC上一點E,連接EB、EC、ED,且∠EDA=ECA,延長EB至點F,連接FD,若∠EDF-F=60°,求∠BDF的度數(shù);

3)如圖3,在(2)的條件下,若CD=10,求AC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計的過直線外一點作已知直線的平行線的尺規(guī)作圖過程.

已知:直線及直線外一點P.

求作:直線,使.

作法:如圖,

①在直線上取一點O,以點O為圓心,長為半徑畫半圓,交直線兩點;

②連接,以B為圓心,長為半徑畫弧,交半圓于點Q

③作直線.

所以直線就是所求作的直線.

根據(jù)小明設(shè)計的尺規(guī)作圖過程:

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面的證明

證明:連接,

__________.

______________)(填推理的依據(jù)).

_____________)(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究.

如圖1,拋物線yx2x2x軸交于AB兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E02).

1)求A,BC三點的坐標(biāo)及直線BE的解析式.

2)如圖2,過點ABE的平行線交拋物線于點D,點P是拋物線上位于線段AD下方的一個動點,連接PA,PD,求OAPD面積的最大值.

3)若(2)中的點P為拋物線上一動點,在x軸上是否存在點Q,使得以A,DP,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CDAB邊上的中線,ECD的中點,過點CAB的平行線交AE的延長線于點F,連接BF

(1) 求證:CFAD

(2) CACB,∠ACB90°,試判斷四邊形CDBF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC 內(nèi)接于⊙O,過點 A 作⊙O 的切線交 CB 的延長線于點 P,且∠PAB=45°

1)如圖 1,求∠ACB 的度數(shù);

2)如圖 2,AD 是⊙O 的直徑,AD BC 于點 E,連接 CD,求證:AC CD

3)如圖 3 ,在(2)的條件下,當(dāng) BC 4CD 時,點 F,G 分別在 AP,AB 上,連接 BF,FG,∠BFG=P,且 BF=FG,若 AE=15,求 FG 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動信號發(fā)射塔,

筆山職中數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測得該塔的塔頂的仰角為.求:

坡頂到地面的距離;

移動信號發(fā)射塔的高度(結(jié)果精確到米).

(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰中,,動點從點出發(fā)沿路徑以的速度運動,設(shè)點運動時間為,的面積為,則關(guān)于的函數(shù)圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐

在數(shù)學(xué)活動課上,老師給出,.點的中點,點在射線上運動,將線段繞點逆時針旋轉(zhuǎn)90°得到線段,連接,.過點,交直線于點

(1)若點在線段上,如圖1,

①根據(jù)題意補全圖1(不要求尺規(guī)作圖);

②判斷的數(shù)量關(guān)系并加以證明;

(2)若點為線段的延長線上一點,如圖2,且,,補全圖2,求的面積.

查看答案和解析>>

同步練習(xí)冊答案