【題目】已知,AB、AC為圓O的弦,連接CO并延長,交AB于點D,且∠ADC=2C;

1)如圖1,求證:AD=CO;

2)如圖2,取弧BC上一點E,連接EB、ECED,且∠EDA=ECA,延長EB至點F,連接FD,若∠EDF-F=60°,求∠BDF的度數(shù);

3)如圖3,在(2)的條件下,若CD=10,,求AC的長度.

【答案】1)見解析;(230°;(3

【解析】

1)利用三角形外角的性質(zhì)結(jié)合已知即可求得∠ADC=DOA,從而證得AD=CO;

2)設(shè),則,利用等角的余角相等證得∠EBA=EDB,根據(jù)三角形內(nèi)角和定理通過計算即可求得答案;

3)作出輔助線,證得為等邊三角形,利用ASA證得,根據(jù)平角的定義求得,設(shè),在中,根據(jù)勾股定理可求得,在中,根據(jù)勾股定理即可求解.

1)連接,

OC=OA

∴∠C=OAC,

∴∠DOA=C=OAC=2C,

∵∠ADC=2C

∴∠ADC=DOA,

AD=OA=OC

2)設(shè),則,

,

,

又∵∠ECA+EBA=180,∠EDA+EDB=180,

∴∠EBA=EDB,

,

3)延長,連接、、

,

,

,

為等邊三角形,

,

∴∠EBG=EDF,

,

(ASA),

,

,

又∵,

,

,

設(shè),

,

中,,

,

(舍,此時),

中,

,,

(HL),

,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】四邊形的內(nèi)接四邊形,,垂足為

1)如圖1,求證:

2)如圖2,點的延長線上,且,連接、,求證:;

3)如圖3,在(2)的條件下,若,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料:

如果函數(shù) yfx)滿足:對于自變量 x 的取值范圍內(nèi)的任意 x1,x2

1)若 x1x2,都有 fx1)<fx2),則稱 fx)是增函數(shù);

2)若 x1x2,都有 fx1)>fx2),則稱 fx)是減函數(shù).

例題:證明函數(shù)fx)= x0)是減函數(shù).

證明:設(shè) 0x1x2

fx1)﹣fx2)=

0x1x2,

x2x10,x1x20

0.即 fx1)﹣fx2)>0

fx1)>fx2).

∴函數(shù) fx= x0)是減函數(shù).

根據(jù)以上材料,解答下面的問題:

已知函數(shù)

f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=

1)計算:f(﹣3)= ,f(﹣4)= ;

2)猜想:函數(shù) 函數(shù)(填“增”或“減”);

3)請仿照例題證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,對角線AC、BD交于點O,AEBDE,∠CAE10°,則∠ADB_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yax24ax6a0)與x軸交于A,B兩點,且OB3OA,與y軸交于點C,拋物線的頂點為D,對稱軸與x軸交于點E

1)求該拋物線的解析式,并直接寫出頂點D的坐標;

2)如圖2,直線y+n與拋物線交于G,H兩點,直線AHAG分別交y軸負半軸于M,N兩點,求OM+ON的值;

3)如圖1,點P在線段DE上,作等腰BPQ,使得PBPQ,且點Q落在直線CD上,若滿足條件的點Q有且只有一個,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某市九年級學生學業(yè)考試體育成績,現(xiàn)從中隨機抽取部分學生的體育成績

進行分段(A50分;B49-45分;C44-40分;D39-30分;E29-0分)統(tǒng)計如下:

根據(jù)上面提供的信息,回答下列問題:

1)在統(tǒng)計表中,a的值為 ,b的值為 ,并將統(tǒng)計圖補充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);

2)甲同學說:我的體育成績是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù). 請問:甲同學的體育成績應在什么分數(shù)段內(nèi)? (填相應分數(shù)段的字母)

3)如果把成績在40分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級學生中體育成績?yōu)閮?yōu)秀的學生人數(shù)約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC

1)求證:DB平分∠ADC

2)若CD9,tanABE,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 前夕質(zhì)監(jiān)部門從某超市經(jīng)銷的兒童玩具、童車和童裝中共抽查了300件兒童用品,以下是根據(jù)抽查結(jié)果繪制出的不完整的統(tǒng)計表和扇形圖;

類別

兒童玩具

童車

童裝

抽查件數(shù)

90



請根據(jù)上述統(tǒng)計表和扇形提供的信息,完成下列問題:

1)分別補全上述統(tǒng)計表和統(tǒng)計圖;

2)已知所抽查的兒童玩具、童車、童裝的合格率分別為90%88%、80%,若從該超市的這三類兒童用品中隨機購買一件,買到合格品的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 交于點 O,點 E AD 上,且 DE=CD,連接 OE,BE ABE ACB ,若 AE=2,則 OE 的長為___________

查看答案和解析>>

同步練習冊答案