【題目】如圖,在ABCD中,E是AD邊上的中點,連接BE,并延長BE交CD的延長線于點F.
(1)證明:FD=AB;
(2)當(dāng)ABCD的面積為8時,求△FED的面積.

【答案】
(1)證明:∵在平行四邊形ABCD中,E是AD邊上的中點,

∴AE=ED,∠ABE=∠F,

在△ABE和△DFE中

,

∴△ABE≌△DFE(AAS),

∴FD=AB;


(2)解:∵DE∥BC,

∴△FED∽△FBC,

∵△ABE≌△DFE,

∴BE=EF,SFBC=SABCD

= ,

= ,

= ,

∴△FED的面積為:2.


【解析】(1)利用已知得出△ABE≌△DFE(AAS),進(jìn)而求出即可;(2)首先得出△FED∽△FBC,進(jìn)而得出 = ,進(jìn)而求出即可.
【考點精析】通過靈活運用平行四邊形的性質(zhì),掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知式子M=(a+5)x3+7x2﹣2x+5是關(guān)于x的二次多項式,且二次項系數(shù)為b,數(shù)軸上A、B兩點所對應(yīng)的數(shù)分別是ab.

(1)a=   ,b=   .A、B兩點之間的距離=   ;

(2)有一動點P從點A出發(fā)第一次向左運動1個單位長度,然后在新的位置第二次運動,向右運動2個單位長度,在此位置第三次運動,向左運動3個單位長度…按照如此規(guī)律不斷地左右運動,當(dāng)運動到2015次時,求點P所對應(yīng)的有理數(shù).

(3)在(2)的條件下,點P會不會在某次運動時恰好到達(dá)某一位置,使點P到點B的距離是點P到點A的距離的3倍?若可能請求出此時點P的位置,并直接指出是第幾次運動,若不可能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC有兩邊在坐標(biāo)軸的正半軸上,如圖所示,雙曲線y= 與邊AB、BC分別交于D、E兩點,OE交雙曲線y= 于點G,若DG∥OA,OA=3,則CE的長為(
A.
B.1.5
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小宇想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個直角的頂點重合于對角線BD上一點P、EF、GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:
①當(dāng)x=1時,點P是正方形ABCD的中心;
②當(dāng)x= 時,EF+GH>AC;
③當(dāng)0<x<2時,六邊形AEFCHG面積的最大值是3;
④當(dāng)0<x<2時,六邊形AEFCHG周長的值不變.
其中正確的選項是( )

A.①③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線l與x軸、y軸分別交于點B(4,0)、C(0,3),點A為x軸負(fù)半軸上一點,AM⊥BC于點M交y軸于點N,滿足4CN=5ON.已知拋物線y=ax2+bx+c經(jīng)過點A、B、C.

(1)求拋物線的函數(shù)關(guān)系式;
(2)連接AC,點D在線段BC上方的拋物線上,連接DC、DB,若△BCD和△ABC面積滿足SBCD= SABC , 求點D的坐標(biāo);
(3)如圖2,E為OB中點,設(shè)F為線段BC上一點(不含端點),連接EF.一動點P從E出發(fā),沿線段EF以每秒1個單位的速度運動到F,再沿著線段FC以每秒 個單位的速度運動到C后停止.若點P在整個運動過程中用時最少,請直接寫出最少時間和此時點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A、B兩點,與y軸交于點C,對稱軸為直線x=﹣1,點B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校校園內(nèi)有一個大正方形花壇,如圖甲所示,它由四個邊長為3米的小正方形組成,且每個小正方形的種植方案相同.其中的一個小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象的一支位于第一象限.

(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點,點A在該反比例函數(shù)位于第一象限的圖象上,點B與點A關(guān)于x軸對稱,若△OAB的面積為6,求m的值.

查看答案和解析>>

同步練習(xí)冊答案