【題目】如圖,已知梯形ABCD中,ADBC,ABBC,ADBCABBC1,E是邊AB上一點,聯(lián)結CE

1)如果CECD,求證:ADAE;

2)聯(lián)結DE,如果存在點E,使得△ADE、△BCE和△CDE兩兩相似,求AD的長;

3)設點E關于直線CD的對稱點為M,點D關于直線CE的對稱點為N,如果AD,且M在直線AD上時,求的值.

【答案】1)見解析;(2;(3

【解析】

1)過C點作CFAD,交AD的延長線于F,可證ABCF是正方形,即AB=BC=CF=FA;再由“HL”證得RtCBERt CFD,可得BE=FD,最后用線段的和差即可;

2)分∠EDC90°和∠DEC90°兩種情況討論,運用相似三角形的性質(zhì)和直角三角形的性質(zhì)即可求解;

3)連接EMCDQ,連接DNCEP,連接ED,CM,作CFADF,由軸對稱的性質(zhì)可得∠CPD=CQE=90°,DC垂直平分EM,可證RtCBERtCFM,可得BE=FM,由勾股定理可求BECE的長,通過證明△CDP∽△CEQ,最后運用相似三角形的性質(zhì)即可解答.

1)證明:如圖,過C點作CFAD,交AD的延長線于F

ADBC,ABBC,ABBC

∴四邊形ABCF是正方形,

ABBCCFFA

又∵CECD,

RtCBERtCFDHL),

BEFD,

ADAE;

2若∠EDC90°時,

若△ADE、△BCE和△CDE兩兩相似,

那么∠A=∠B=∠EDC90°,∠ADE=∠BCE=∠DCE30°,

在△CBE中,∵BC1,

,

AB1,

,

此時,

∴△CDE與△ADE、△BCE不相似;

如圖,若∠DEC90°時,

∵∠ADE+A=∠BEC+DEC,∠DEC=∠A90°,

∴∠ADE=∠BEC,且∠A=∠B90°,

∴△ADE∽△BEC,

∴∠AED=∠BCE,

若△CDE與△ADE相似,

ABCD不平行,

∴∠AED與∠EDC不相等,

∴∠AED=∠BCE=∠DCE

∴若△CDE與△ADE、△BCE相似,

,

AEBE,

AB1,

AEBE,

AD;

3)連接EMCDQ,連接DNCEP,連接ED,CM,作CFADF,

E關于直線CD的對稱點為M,點D關于直線CE的對稱點為N,

∴∠CPD=∠CQE90°,DC垂直平分EM,

PCD=∠QCE,

∴△CDP∽△CEQ,

ADBC,ABBC,,ABBC1

,

CD垂直平分EM

DEDM,CECM

RtCBERtCFM中,CBCFECCM,

RtCBERtCFMHL

BEFM,

BEx,則FMx,

EDDM,且AE2+AD2DE2,

,

,

,

,

DN2DP,EM2EQ,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)點是線段上一點,過點軸于點,交反比例函數(shù)圖象于點,連接、,若的面積為,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(抗擊疫情)為了遏制新型冠狀病毒疫情的蔓延勢頭,各地教育部門在推遲各級學校開學時間的同時提出聽課不停學的要求,各地學校也都開展了遠程網(wǎng)絡教學,某校集中為學生提供四類在線學習方式:在線閱讀、在線聽課、在線答疑、在線討論,為了了解學生的需求,該校通過網(wǎng)絡對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)結果繪制成如下兩幅不完整的統(tǒng)計圖。

1)本次調(diào)查的人數(shù)有多少人?

2)請補全條形圖;

3)請求出“在線答疑”在扇形圖中的圓心角度數(shù);

4)小寧和小娟都參加了遠程網(wǎng)絡教學活動,請求出小寧和小娟選擇同一種學習方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程的兩個實數(shù)根分別為,.則拋物線x軸的交點坐標為_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AC2AB3,BC4,點G是△ABC的重心.將△ABC平移,使得頂點A與點G重合.那么平移后的三角形與原三角形重疊部分的周長為(  )

A.2B.3C.4D.4.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“長跑”是中考體育考試項目之一.某中學為了解九年級學生“長跑”的情況,隨機抽取部分九年級學生,測試其長跑成績(男子1000米,女子800米),按長跑的時間的長短依次分為A,BC,D四個等級進行統(tǒng)計,并繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

1)在這次調(diào)查中共抽取了  名學生,扇形統(tǒng)計圖中,D類所對應的扇形圓心角大小為 ;

2)所抽取學生“長跑”測試成績的中位數(shù)會落在 等級;

3)若該校九年級共有900名學生,請你估計該校C等級的學生約在多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組正方形按如圖所示的方式放置,其中頂點B1y軸上,頂點C1E1,E2,C2,E3,E4,C3……x軸上,已知正方形A1B1C1D1的邊長為1,B1C1O60°B1C1B2C2B3C3……,則正方形A2020B2020C2020D2020的邊長是(

A.()2017B.()2018C.()2019D.()2020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一條直線把一個四邊形分成兩部分,這兩部分圖形的周長相等,那么這條直線稱為這個四邊形的等分周長線.在直角梯形ABCD中,ABCD,∠A90°,DCAD,∠B是銳角,cotB,AB17.如果點E在梯形的邊上,CE是梯形ABCD等分周長線,那么△BCE的周長為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示,AB是⊙O的直徑,點F是半圓上的一動點(F不與A,B重合),弦AD平分∠BAF,過點DDEAF交射線AF于點AF

1)求證:DE與⊙O相切:

2)若AE8,AB10,求DE長;

3)若AB10AF長記為x,EF長記為y,求yx之間的函數(shù)關系式,并求出AFEF的最大值.

查看答案和解析>>

同步練習冊答案