如圖,是一個(gè)照相機(jī)成像的示意圖.
(1)如果像高M(jìn)N是35mm,焦距是50mm,拍攝的景物高度AB是4.9m,拍攝點(diǎn)離景物有多遠(yuǎn)?
(2)如果要完整的拍攝高度是2m的景物,拍攝點(diǎn)離景物有4m,像高不變,則相機(jī)的焦距應(yīng)調(diào)整為多少?
(1)7 m。
(2)70mm。
解析試題分析:(1)利用相似三角形對(duì)應(yīng)邊上的高等于相似比即可列出比例式求解。
(2)和(1)一樣,利用物體的高和拍攝點(diǎn)距離物體的距離及像高表示求相機(jī)的焦距即可。
解:根據(jù)物體成像原理知:△LMN∽△LBA,∴。
(1)∵像高M(jìn)N是35mm,焦距是50mm,拍攝的景物高度AB是4.9m,
∴,解得:LD=7。
∴拍攝點(diǎn)距離景物7 m。
(2)拍攝高度AB是2m的景物,拍攝點(diǎn)離景物L(fēng)C=4m,像高M(jìn)N不變,是35mm,
∴,解得:LC=70。
∴相機(jī)的焦距應(yīng)調(diào)整為70mm。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
將矩形ABCD紙片沿對(duì)角線AC剪開,得到△ABC和△A′C′D,如圖1所示,將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示,觀察圖2可知:與BC相等的線段是______,∠CAC′=______°。
問(wèn)題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q,試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.,
拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H,若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,如圖,ABCD中,AD=3cm,CD=1cm,∠B=45°,點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動(dòng),速度為3cm/s;點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動(dòng),速度為1cm/s,連接并延長(zhǎng)QP交BA的延長(zhǎng)線于點(diǎn)M,過(guò)M作MN⊥BC,垂足是N,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<1),解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),四邊形AQDM是平行四邊形?
(2)設(shè)四邊形ANPM的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使四邊形ANPM的面積是ABCD面積的一半,若存在,求出相應(yīng)的t值,若不存在,說(shuō)明理由
(4)連接AC,是否存在某一時(shí)刻t,使NP與AC的交點(diǎn)把線段AC分成的兩部分?若存在,求出相應(yīng)的t值,若不存在,說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在Rt△ABC,∠C=90°,D為AB邊上一點(diǎn),點(diǎn)M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點(diǎn)F,NE⊥AB于點(diǎn)E.
(1)特殊驗(yàn)證:如圖1,若AC=BC,且D為AB中點(diǎn),求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點(diǎn),(1)中的兩個(gè)結(jié)論有一個(gè)仍成立,請(qǐng)指出并加以證明;
②如圖3,若BD=kAD,條件中“點(diǎn)M在BC邊上”改為“點(diǎn)M在線段CB的延長(zhǎng)線上”,其它條件不變,請(qǐng)?zhí)骄緼E與DF的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點(diǎn)D地邊AC上,點(diǎn)E、F在邊AB上,點(diǎn)G在邊BC上。
(1)求證:△ADE≌△BGF;
(2)若正方形DEFG的面積為16cm,求AC的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com