【題目】四邊形ABCD是邊長為4的正方形,點(diǎn)E在邊AD所在的直線上,連接CE,以CE為邊,作正方形CEFG(點(diǎn)D,點(diǎn)F在直線CE的同側(cè)),連接BF,
圖1 圖2
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)A重合時,則_____;
(2)如圖2,當(dāng)點(diǎn)E在線段AD上時,,
①求點(diǎn)F到AD的距離;
②求BF的長.
【答案】(1);(2)①點(diǎn)F到AD的距離為3;②BF=.
【解析】
(1)根據(jù)勾股定理依次求出AC、CF、BF長即可;
(2)①過點(diǎn)F作,由正方形的性質(zhì)可證,根據(jù)全等三角形的性質(zhì)可得FH的長;②延長FH交BC的延長線于點(diǎn)K,求出BK、FK的長,根據(jù)勾股定理可得解.
解:(1) 當(dāng)點(diǎn)E與點(diǎn)A重合時,點(diǎn)C、D、F在一條直線,連接CF,在中,,同理可得
(2)①過點(diǎn)F作交AD的延長線于點(diǎn)H,如圖所示
∵四邊形CEFG是正方形,
∴,
∴,
又∵四邊形ABCD是正方形,
∴
∴,
∴
又∵,
∴
∴
∵,,
∴,
∴,即點(diǎn)F到AD的距離為3.
②延長FH交BC的延長線于點(diǎn)K,如圖所示
∴,
∴四邊形CDHK為矩形,
∴,
∴,
∵,
∴,
∴,
∴,
在中,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是□ABCD的一條對角線,過AC中點(diǎn)O的直線分別交AD,BC于點(diǎn)E,F.
(1)求證:△AOE≌△COF;
(2)若EF與AC垂直,試判斷四邊形AFCE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①在直角三角形ABC中,已知兩邊長為3和4,則第三邊長為5;②三角形的三邊a、b、c滿足a2+c2=b2,則∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,則△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,則這個三角形是直角三角形,其中,正確命題為_____(選填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月31日,昌平區(qū)舉辦了首屆初二年級學(xué)生“數(shù)學(xué)古文化閱讀展示”活動,為表彰在本次活動中表現(xiàn)優(yōu)秀的學(xué)生,老師決定在6月1日購買筆袋或彩色鉛筆作為獎品. 已知1個筆袋、2筒彩色鉛筆原價共需44元;2個筆袋、3筒彩色鉛筆原價共需73元.
(1)每個筆袋、每筒彩色鉛筆原價各多少元?
(2)時逢“兒童節(jié)”,商店舉行“優(yōu)惠促銷”活動,具體辦法如下:筆袋“九折”優(yōu)惠;彩色鉛筆不超過10筒不優(yōu)惠,超出10筒的部分“八折”優(yōu)惠. 若買x個筆袋需要y1元,買x筒彩色鉛筆需要y2元. 請用含x的代數(shù)式表示y1、y2;
(3)若在(2)的條件下購買同一種獎品95件,請你分析買哪種獎品省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)O為圓心的三個同心圓把以O(shè)A1為半徑的大圓的面積四等分,若OA1=R,則OA4:OA3:OA2:OA1=______________,若有()個同心圓把這個大圓等分,則最小的圓的半徑是=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 為 AC 上一點(diǎn),將△ABD 沿 BD 折疊,使點(diǎn) A 恰好落在 BC 上的 E 處,則折痕 BD 的長是( )
A.5B.C.3 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AD上一點(diǎn),點(diǎn)B為CD的中點(diǎn),且AD=8 cm,BD=2 cm.
(1)圖中共有多少條線段?
(2)求AC的長.
(3)若點(diǎn)E在直線AD上,且EA=3 cm,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,BE 平分∠ABC,DE∥BC.
(1)判斷△DBE 是什么三角形,并說明理由;
(2)若 F 為 BE 中點(diǎn),∠ABC=58°,試說明 DF⊥BE,并求∠EDF 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東營市某中學(xué)校團(tuán)委開展“關(guān)愛殘疾兒童”愛心捐書活動,全校師生踴躍捐贈各類書籍共3000本.為了了解各類書籍的分布情況,從中隨機(jī)抽取了部分書籍分四類進(jìn)行統(tǒng)計(jì):A.藝術(shù)類;B.文學(xué)類;C.科普類;D.其他,并將統(tǒng)計(jì)結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
(1)這次統(tǒng)計(jì)共抽取_____本書籍,扇形統(tǒng)計(jì)圖中的m=______,∠α的度數(shù)是_____
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)估計(jì)全校師生共捐贈了多少本文學(xué)類書籍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com