【題目】如圖,已知以E(3,0)為圓心,5為半徑的☉E與x軸交于A,B兩點,與y軸交于C點,拋物線y=ax2+bx+c(a≠0)經(jīng)過A,B,C三點,頂點為F.
(1)求A,B,C三點的坐標(biāo);
(2)求拋物線的解析式及頂點F的坐標(biāo);
(3)已知M為拋物線上的一動點(不與C點重合),試探究:①若以A,B,M為頂點的三角形面積與△ABC的面積相等,求所有符合條件的點M的坐標(biāo);
②若探究①中的M點位于第四象限,連接M點與拋物線頂點F,試判斷直線MF與☉E的位置關(guān)系,并說明理由.
【答案】(1)A(-2,0),B(8,0),C(0,-4);(2)拋物線的解析式為y=x2-x-4,F(xiàn);(3)①所點M的坐標(biāo)為(6,-4),(+3,4),(-+3,4);②若M點位于第四象限,則M點即為M1點,此時直線MF和☉E相切,理由見解析.
【解析】分析:(1)由題意可直接得到點A、B的坐標(biāo),連接CE,在Rt△OCE中,利用勾股定理求出OC的長,則得到點C的坐標(biāo);
(2)已知點A、B、C的坐標(biāo),利用交點式與待定系數(shù)法求出拋物線的解析式,由解析式得到頂點F的坐標(biāo);
(3)①△ABC中,底邊AB上的高OC=4,若△ABC與△ABM面積相等,則拋物線上的點M須滿足條件:|yM|=4.因此解方程yM=4和yM=-4,可求得點M的坐標(biāo);
②如解答圖,作輔助線,可求得EM=5,因此點M在 E上;再利用勾股定理求出MF的長度,則利用勾股定理的逆定理可判定△EMF為直角三角形,∠EMF=90°,所以直線MF與 E相切.
詳解:(1)由題圖可得點A的橫坐標(biāo)為3-5=-2,點B的橫坐標(biāo)為3+5=8,
連接CE,則CE=5,又OE=3,
∴OC==4,
∴A(-2,0),B(8,0),C(0,-4).
(2)把(-2,0),(8,0),(0,-4)代入y=ax2+bx+c,得.
解得
∴拋物線的解析式為y=x2-x-4.
∵EF∥y軸,∴點F的橫坐標(biāo)為3.
把x=3代入y=x2-x-4,得y=-,
∴F.
(3)①如圖所示,連接AC,BM1,BC,
易知=S△ABC,△ABM1與△ABC同底等高,
點C與點M1關(guān)于直線x=3對稱,
M1(6,-4).
把y=4代入y=x2-x-4,得x2-x-4=4,
解得x1=+3,x2=-+3,
∴M2(+3,4),M3(-+3,4).
∴所有符合條件的點M的坐標(biāo)為(6,-4),(+3,4),(-+3,4).
②若M點位于第四象限,則M點即為M1點,此時直線MF和☉E相切.
理由如下:M1(6,-4),圓心E(3,0),點F,
連接M1E.
利用勾股定理得M1E=5,M1F=,又EF=,
∴M1E2+M1F2=EF2,即∠FM1E=90°,
∴M1E⊥M1F.
∵M1E是☉E的半徑,
∴直線M1F和☉E相切,
即當(dāng)M點位于第四象限時,直線MF與☉E相切.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年全國兩會民生話題成為社會焦點.合肥市記者為了了解百姓“兩會民生話題”的聚焦點,隨機調(diào)查了合肥市部分市民,并對調(diào)查結(jié)果進(jìn)行整理.繪制了如圖所示的不完整的統(tǒng)計圖表.
組別 | 焦點話題 | 頻數(shù)(人數(shù)) |
A | 食品安全 | 80 |
B | 教育醫(yī)療 | m |
C | 就業(yè)養(yǎng)老 | n |
D | 生態(tài)環(huán)保 | 120 |
E | 其他 | 60 |
請根據(jù)圖表中提供的信息解答下列問題:
(1)填空:m= ,n= .扇形統(tǒng)計圖中E組所占的百分比為 %;
(2)合肥市人口現(xiàn)有750萬人,請你估計其中關(guān)注D組話題的市民人數(shù);
(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人關(guān)注C組話題的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次消防演習(xí)中,消防員架起一架25米長的云梯,如圖斜靠在一面墻上,梯子底端離墻7米.
(1)求這個梯子的頂端距地面有多高?
(2)如果消防員接到命令,要求梯子的頂端下降4米(云梯長度不變),那么云梯的底部在水平方向應(yīng)滑動多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x﹣1交于A、B兩點.點A的橫坐標(biāo)為﹣3,點B在y軸上,點P是y軸左側(cè)拋物線上的一動點,橫坐標(biāo)為m,過點P作PC⊥x軸于C,交直線AB于D.
(1)求拋物線的解析式;
(2)當(dāng)m為何值時,S四邊形OBDC=2S△BPD;
(3)是否存在點P,使△PAD是直角三角形?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)給出的數(shù)軸及已知條件,解答下面的問題:
(1)已知點A,B,C表示的數(shù)分別為1,,-3.觀察數(shù)軸,與點A的距離為3的點表示的數(shù)是 ,A,B兩點之間的距離為 。
(2)數(shù)軸上,點B關(guān)于點A的對稱點表示的數(shù)是 ;
(3)若將數(shù)軸折疊,使得A點與C點重合,則與B點重合的點表示的數(shù)是 ;若此數(shù)軸上M,N兩點之間的距離為2019(M在N的左側(cè)),且當(dāng)A點與C點重合時,M點與N點也恰好重合,則點M表示的數(shù)是 ,點N表示的數(shù)是 。
(4)若數(shù)軸上P,Q兩點間的距離為a(P在Q的左側(cè)),表示數(shù)b的點到P,Q的兩點的距離相等,將數(shù)軸折疊,當(dāng)P點與Q點重合時,點P表示的數(shù)是 ,點Q表示的數(shù)是 (用含a,b的式子表示這兩個數(shù))。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次禁毒宣傳活動中,某執(zhí)勤小組乘車沿東西向公路進(jìn)行安全維護(hù),如果約定向東為正,向西為負(fù),行駛記錄如下(單位:米):+18,-9,+7,-14,-3,+13,-8,-6,+15,+6.
(1)執(zhí)勤過程中,最遠(yuǎn)處離出發(fā)點有多遠(yuǎn)?
(2)若汽車行駛每千米耗油量為升,求這次執(zhí)勤的汽車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)計劃購進(jìn)若干個甲種規(guī)格的排球和乙種規(guī)格的足球. 如果購買20個甲種規(guī)格的排球和15個乙種規(guī)格的足球,一共需要花費2050元;如果購買10個甲種規(guī)格的排球和20個乙種規(guī)格的足球,一共需要花費1900元。
(1)求每個甲種規(guī)格的排球和每個已匯總規(guī)格的足球的價格分別是多少元?
(2)如果學(xué)校要購買甲種規(guī)格的排球和乙種規(guī)格的足球共50個,并且預(yù)算總費用不超過3080元,那么該學(xué)校至多能購買多少個乙種規(guī)格的足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】市園林處為了對一段公路進(jìn)行綠化,計劃購買,兩種風(fēng)景樹共900棵.,兩種樹的相關(guān)信息如下表:
品種 項目 | 單價(元棵) | 成活率 |
80 | ||
100 |
若購買種樹棵,購樹所需的總費用為元.
(1)求與之間的函數(shù)關(guān)系式;
(2)若購樹的總費用不超過82 000元,則購種樹不少于多少棵?
(3)若希望這批樹的成活率不低于,且使購樹的總費用最低,應(yīng)選購,兩種樹各多少棵?此時最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時間x(小時)之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時)之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:
(1)求線段CD對應(yīng)的函數(shù)表達(dá)式;
(2)求E點的坐標(biāo),并解釋E點的實際意義;
(3)若已知轎車比貨車晚出發(fā)2分鐘,且到達(dá)乙地后在原地等待貨車,則當(dāng)x= 小時,貨車和轎車相距30千米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com