【題目】如圖,平行四邊形ABCD中,AE、DE分別平分∠BAD、∠ADC,E點在BC上.
(1)求證:BC=2AB;
(2)若AB=3cm,∠B=60°,一動點F以1cm/s的速度從A點出發(fā),沿線段AD運動,CF交DE于G,當(dāng)CF∥AE時:
①求點F的運動時間t的值;②求線段AG的長度.
【答案】(1)見解析;(2)①t=3(秒);②AG=.
【解析】
(1)先判斷出∠DAE=∠AEB,再判斷出∠DAE=∠BAE,進(jìn)而得出∠BAE=∠AEB,即可判斷出AB=BE同理:判斷出CE=AB,即可得出結(jié)論
(2)①先判斷出四邊形AECF是平行四邊形,進(jìn)而求AF=3,即可得出結(jié)論
②先判斷出△ABE是等邊三角形,進(jìn)而求出∠AEB=60°,AE=3cm,再判斷出∠DCF=∠ECF,即可判斷出∠CGE=90°,最后用勾股定理即可得出結(jié)論.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD∥BC,
∴∠DAE=∠AEB,
∵AE是∠BAD的平分線,
∴∠DAE=∠BAE,
∴∠BAE=∠AEB,
∴AB=BE,
同理:CE=CD,
∴BE=CE=AB,
∴BC=BE+CD=2AB;
(2)①由(1)知,CE=CD=AB,
∵AB=3cm,
∴CE=3cm,
∵四邊形ABCD是平行四邊形,
∴AD∥BC
∵AE∥CF,
∴四邊形AECF是平行四邊形,
∴AF=CE=3cm,
∴點F的運動時間t=3÷1=3(秒);
②由(1)知AB=BE,
∵∠B=60°,
∴△ABE是等邊三角形,
∴∠AEB=60°,AE=AB=3cm,
∵四邊形ABCD是平行四邊形,
∴∠B+∠BCD=180°,
∵∠B=60°,
∴∠BCD=120°,
∵AE∥CF,
∴∠ECF=∠AEB=60°,
∴∠DCF=∠BCD﹣∠ECF=60°=∠ECF,
由(1)知,CE=CD=AB=3cm,
∴CF⊥DE,
∴∠CGE=90°,
在Rt△CGE中,∠CEG=90°﹣∠ECF=30°,CG= CE= ,
∴EG= CG= ,
∵∠AEB=60°,∠CEG=30°,
∴∠AEG=90°,
在Rt△AEG中,AE=3,根據(jù)勾股定理得,AG=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形,對角線交于點,點分別是的中點,連接交于,連接
(1)證明:四邊形是平行四邊形
(2)點是哪些線段的中點,寫出結(jié)論,并選擇一組給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點間的距離等于這兩個點所對應(yīng)的數(shù)的差的絕對值.例:點A、B在數(shù)軸上對應(yīng)的數(shù)分別為a、b,則A、B兩點間的距離表示為AB=|a﹣b|.根據(jù)以上知識解題:
(1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB=_______.
(2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a=______.
(3)如果數(shù)軸上表示數(shù)a的點位于﹣4和2之間,那么|a+4|+|a﹣2|=______.
(4)對于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB延長線于點A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,a 、b 、c 是 RtABC和 RtBED 的邊長,已知,這時我們把關(guān)于 x 的形如二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)寫出一個“勾系一元二次方程”;
(2)求證:關(guān)于 x 的“勾系一元二次方程”,必有實數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AB=10,∠ABC=60°,以AB為直徑作⊙O,邊CD切⊙O于點E.
(1)圓心O到CD的距離是______;
(2)求由弧AE、線段AD、DE所圍成的陰影部分的面積.(結(jié)果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在普通商場中用96元購買了一種商品,后來他在網(wǎng)上發(fā)現(xiàn)完全相同的這一商品在網(wǎng)上購買比普通商場中每件少2元,他用90元在網(wǎng)上再次購買這一商品,比上次在普通商場中多買了3件.問小明在網(wǎng)上購買的這一商品每件幾元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,點P為邊BC上一動點,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°,點A恰好落在直線CD上點E處
(1) 如圖1,點E在線段CD上,求證:AD+DE=2AB
(2) 如圖2,點E在線段CD的延長線上,且點D 為線段CE的中點,在線段BD上取點F,連接AF、PF,若AF=AB,求證:∠APF=∠ADB
(3) 如圖3,點E在線段CD上,連接BD.若AB=2,BD∥PE,則DE=___________ (直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中點A的坐標(biāo)為(0,6),點B的坐標(biāo)為(﹣,5),將△AOB沿x軸向左平移得到△A′O′B′,點A的對應(yīng)點A′落在直線y=﹣x上,則點B的對應(yīng)點B′的坐標(biāo)為( )
A.(﹣8,6)B.(﹣,5)C.(﹣,5)D.(﹣8,5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com