若⊙O所在平面內(nèi)一點(diǎn)P到⊙O上的點(diǎn)的最大距離為m,最小距離為n(m>n),則此圓的半徑為( )
A.
B.
C.
D.m+n或m-n
【答案】分析:點(diǎn)P可能在圓內(nèi),也可能在圓外;當(dāng)點(diǎn)P在圓內(nèi)時(shí),直徑為最大距離與最小距離的和;當(dāng)點(diǎn)P在圓外時(shí),直徑為最大距離與最小距離的差;再分別計(jì)算半徑.
解答:解:當(dāng)點(diǎn)P在圓內(nèi)時(shí),直徑為最大距離與最小距離的和,即可得:半徑為,
當(dāng)點(diǎn)P在圓外時(shí),直徑為最大距離與最小距離的差,即可得半徑為;
故選C.
點(diǎn)評(píng):本題考查學(xué)生分類的思想及對(duì)點(diǎn)P到圓上最大距離、最小距離的認(rèn)識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若⊙O所在平面內(nèi)一點(diǎn)P到⊙O上的點(diǎn)的最大距離為a,最小距離為b(a>b),則此圓的半徑為( 。
A、
a+b
2
B、
a-b
2
C、
a+b
2
a-b
2
D、a+b或a-b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若⊙O所在平面內(nèi)一點(diǎn)P到⊙O上的點(diǎn)的最大距離為m,最小距離為n(m>n),則此圓的半徑為(  )
A、
m+n
2
B、
m-n
2
C、
m+n
2
m-n
2
D、m+n或m-n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若⊙O所在平面內(nèi)一點(diǎn)P到⊙O上的點(diǎn)的最大距離為m,最小距離為n(m>n),則此圓的半徑為
m+n
2
m-n
2
m+n
2
m-n
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若⊙O所在平面內(nèi)一點(diǎn)P到⊙O的最大距離為8,最小距離為2,則⊙O的半徑為
3或5
3或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省九年級(jí)11月月考數(shù)學(xué)試題(解析版) 題型:選擇題

若⊙O所在平面內(nèi)一點(diǎn)P到⊙O上的點(diǎn)的最大距離為a,最小距離為b(a>b),則此圓的直徑為( )

A.                B. 

C.         D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案