【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于60元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達式;
(2)求售價為多少元時每天獲得利潤最大,最大利潤是多少?
【答案】(1) y=-2x+200;(2) x=60時,利潤最大1600元
【解析】
(1)待定系數(shù)法求解可得;
(2)根據(jù)“總利潤=每千克利潤×銷售量”可得函數(shù)解析式,將其配方成頂點式即可得最值情況.
解:(1)設(shè)y=kx+b,
將(50,100)、(60,80)代入,得:
,
解得:
,
∴y=-2x+200 (40≤x≤60);
(2)W=(x-40)(-2x+200)
=-2x2+280x-8000
=-2(x-70)2+1800,
∴當(dāng)x=60時,W取得最大值為1600,
答:W與x之間的函數(shù)表達式為W=-2x2+280x-8000,售價為60元時獲得最大利潤,最大利潤是1600元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某快餐店共有10名員工,所有員工工資的情況如下表:
人員 | 店長 | 廚師甲 | 廚師乙 | 會計 | 服務(wù)員甲 | 服務(wù)員乙 | 勤雜工 |
人數(shù) | 1 | 1 | 1 | 1 | 1 | 3 | 2 |
工資額 | 20000 | 7000 | 4000 | 2500 | 2200 | 1800 | 1200 |
請解答下列問題:
(1)餐廳所有員工的平均工資是 ;所有員工工資的中位數(shù)是 .
(2)用平均數(shù)還是用中位數(shù)描述該餐廳員工工資的一般水平比較恰當(dāng)?
(3)去掉店長和廚師甲的工資后,其他員工的平均工資是多少?它是否也能反映該快餐店員工工資的一般水平?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組為測量教學(xué)樓CD的高,先在A處用高1.5米的測角儀測得教學(xué)樓頂端D的仰角∠DEG為30°,再向前走20米到達B處,又測得教學(xué)樓頂端D的仰角∠DFG為60°,A、B、C三點在同一水平線上,求教學(xué)樓CD的高(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在正方形ABCD和正方形DEFG中,頂點B、D、F在同一直線上,H是BF的中點.
(1)如圖①,若AB=1,DG=2,求BH的長;
(2)如圖②,連接AH、GH,求證:AH=GH且AH⊥GH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,以A、D為圓心,半徑分別為2和1畫圓,E、F分別是⊙A、⊙D上的一動點,P是BC上的一動點,則PE+PF的最小值是( )
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點,若⊙O的半徑為8,則GE+FH的最大值為( )
A.8B.12C.16D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知等邊△ABC中,AB=8.以AB為直徑的半⊙O與邊AC相交于點D.過點D作DE⊥BC,垂足為E,過點E作EF⊥AB,垂足為F、連接DF.
(1)求證:DE是⊙O的切線
(2)求EF的長;
(3)求sin∠EFD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于拋物線y=x2-(a+1)x+a-2,下列說法錯誤的是( 。
A. 開口向上 B. 當(dāng)a=2時,經(jīng)過坐標原點O
C. a>0時,對稱軸在y軸左側(cè) D. 不論a為何值,都經(jīng)過定點(1,-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c圖象經(jīng)過(0,0)、(1,1)、(1,9)三點,下列性質(zhì)錯誤的是( )
A.開口向上B.對稱軸在y軸左側(cè)
C.經(jīng)過第四象限D.當(dāng)x>0,y隨x增大而增大
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com