(2012•湘潭)如圖,拋物線y=ax2-
32
x-2(a≠0)
的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標(biāo).
分析:(1)該函數(shù)解析式只有一個待定系數(shù),只需將B點坐標(biāo)代入解析式中即可.
(2)首先根據(jù)拋物線的解析式確定A點坐標(biāo),然后通過證明△ABC是直角三角形來推導(dǎo)出直徑AB和圓心的位置,由此確定圓心坐標(biāo).
(3)△MBC的面積可由S△MBC=
1
2
BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設(shè)一條平行于BC的直線,那么當(dāng)該直線與拋物線有且只有一個交點時,該交點就是點M.
解答:解:(1)將B(4,0)代入拋物線的解析式中,得:
0=16a-
3
2
×4-2,即:a=
1
2

∴拋物線的解析式為:y=
1
2
x2-
3
2
x-2.

(2)由(1)的函數(shù)解析式可求得:A(-1,0)、C(0,-2);
∴OA=1,OC=2,OB=4,
即:OC2=OA•OB,又:OC⊥AB,
∴△OAC∽△OCB,得:∠OCA=∠OBC;
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,
∴△ABC為直角三角形,AB為△ABC外接圓的直徑;
所以該外接圓的圓心為AB的中點,且坐標(biāo)為:(
3
2
,0).

(3)已求得:B(4,0)、C(0,-2),可得直線BC的解析式為:y=
1
2
x-2;
設(shè)直線l∥BC,則該直線的解析式可表示為:y=
1
2
x+b,當(dāng)直線l與拋物線只有一個交點時,可列方程:
1
2
x+b=
1
2
x2-
3
2
x-2,即:
1
2
x2-2x-2-b=0,且△=0;
∴4-4×
1
2
(-2-b)=0,即b=-4;
∴直線l:y=
1
2
x-4.
所以點M即直線l和拋物線的唯一交點,有:
y=
1
2
x2-
3
2
x-2  
y=
1
2
x-4

解得:
x=2
y=-3

即 M(2,-3).
過M點作MN⊥x軸于N,
S△BMC=S梯形OCMN+S△MNB-S△OCB=
1
2
×2×(2+3)+
1
2
×2×3-
1
2
×2×4=4.
點評:考查了二次函數(shù)綜合題,該題的難度不算太大,但用到的瑣碎知識點較多,綜合性很強.熟練掌握直角三角形的相關(guān)性質(zhì)以及三角形的面積公式是理出思路的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,在⊙O中,弦AB∥CD,若∠ABC=40°,則∠BOD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,某中學(xué)準(zhǔn)備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設(shè)計一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,△ABC的一邊AB是⊙O的直徑,請你添加一個條件,使BC是⊙O的切線,你所添加的條件為
∠ABC=90°
∠ABC=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湘潭)如圖,矩形ABCD是供一輛機動車停放的車位示意圖,已知BC=2m,CD=5.4m,∠DCF=30°,請你計算車位所占的寬度EF約為多少米?(
3
≈1.73
,結(jié)果保留兩位有效數(shù)字.)

查看答案和解析>>

同步練習(xí)冊答案