【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與B,C重合),CN⊥DM,CN與AB交于點N,連接OM,ON,MN.下列四個結(jié)論:①△CNB≌△DMC;②△CON≌△DOM;③△OMN≌△OAD;④AN2+CM2=MN2;其中正確的結(jié)論是_____.(填寫所有正確結(jié)論的序號)
【答案】①②④
【解析】
①易證△CNB≌△DMC(ASA),①正確;②由△CNB≌△DMC得CM=BN,證得△CON≌△DOM(SAS),②正確;③證得△MON是等腰直角三角形,可得△OMN∽△OAD,③不正確;④由勾股定理得在Rt△BMN中,BM2+BN2=MN2,由 AB=BC,CM=BN,推出BM=AN,可得AN2+CM2=MN2,④正確
∵正方形ABCD中,CD=BC,∠BCD=90°,
∴∠BCN+∠DCN=90°,
又∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
在△CNB和△DMC中,,
∴△CNB≌△DMC(ASA),①正確;
∴CM=BN,
∵四邊形ABCD是正方形,
∴∠OCM=∠OBN=45°,OC=OB=OD,
在△OCM和△OBN中,,
∴△OCM≌△OBN(SAS),
∴OM=ON,∠COM=∠BON,
∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,
在△CON和△DOM中,,
∴△CON≌△DOM(SAS),②正確;
∵∠BON+∠BOM=∠COM+∠BOM=90°,
∴∠MON=90°,即△MON是等腰直角三角形,
又∵△AOD是等腰直角三角形,
∴△OMN∽△OAD,③不正確;
∵AB=BC,CM=BN,
∴BM=AN,
,④正確;
故答案為:①②④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果拋物線y=-x2+bx+c經(jīng)過A(0,-2),B(-1,1)兩點,那么此拋物線經(jīng)過
A. 第一、二、三、四象限 B. 第一、二、三象限
C. 第一、二、四象限 D. 第二、三、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O于點E.
(1)求證:AC平分∠DAB;
(2)連接BC,若cos∠CAD=,⊙O的半徑為5,求CD、AE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點坐標(biāo)分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC,DC是⊙O的兩條弦,點P在AB的延長線上.已知,∠ACD=60°,∠APD=30°
(1)求證:PD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.
(1)求該拋物線的解析式;
(2)若點E為x軸下方拋物線上的一動點,當(dāng)S△ABE=S△ABC時,求點E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為銳角內(nèi)部一點,過點作于點,于點,以為直徑作,交直線于點,連接,交于點.
(1)求證:.
(2)連接,當(dāng),時,在點的整個運動過程中.
①若,求的長.
②若為等腰三角形,求所有滿足條件的的長.
(3)連接,交于點,當(dāng),時,記的面積為,的面積為,請寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義一種新函數(shù):形如(,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結(jié)論:①圖象與坐標(biāo)軸的交點為,和;②圖象具有對稱性,對稱軸是直線;③當(dāng)或時,函數(shù)值隨值的增大而增大;④當(dāng)或時,函數(shù)的最小值是0;⑤當(dāng)時,函數(shù)的最大值是4.其中正確結(jié)論的個數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線將是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.下列敘述正確的是( 。
A. 小球的飛行高度不能達(dá)到15m
B. 小球的飛行高度可以達(dá)到25m
C. 小球從飛出到落地要用時4s
D. 小球飛出1s時的飛行高度為10m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com