【題目】如圖ABC中,∠BAC=90°AB=AC=AD,ADBC于點(diǎn)P,∠CAD=30°,AC=6,求:

1)∠BDC的度數(shù),

2ABD的周長

【答案】11350218

【解析】

1)根據(jù)∠BAC=90°,∠CAD=30°可先求出∠DAB=60°,因?yàn)?/span>AB=AD,從而得出∠ADB的度數(shù),之后利用AD=AC得出∠ADC度數(shù),二者相加即可得出答案;

2)由(1)可得ABD是等邊三角形,進(jìn)而得出答案即可..

1)∵∠BAC=90°,∠CAD=30°,

∴∠DAB=60°,

AD=AB,

ABD是等邊三角形,

∴∠ADB=60°,

又∵∠CAD=30°,AC=AD,

∴∠ADC=75°

∴∠BDC=ADB+ADC=135°

2)由(1)得ABD是等邊三角形,

AC=6,

AB=AD=BD=AC=6,

ABD的周長為18.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一條線段將一個(gè)三角形分成2個(gè)小等腰三角形,我們把這條線段叫做這個(gè)三角形的好線:如果兩條線段將一個(gè)三角形分成3個(gè)小等腰三角形,我們把這兩條線段叫做這個(gè)三角形的好好線”.

理解:

1)如圖1,在中,,點(diǎn)邊上,且,求的大;

2)在圖1中過點(diǎn)作一條線段,使好好線;

在圖2中畫出頂角為的等腰三角形的好好線,并標(biāo)注每個(gè)等腰三角形頂角的度數(shù)(畫出一種即可);

應(yīng)用:

3)在中,好好線,點(diǎn)邊上,點(diǎn)邊上,且,,請求出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形紙片ABCD中, ,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)分別在邊上,則的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)中點(diǎn),連接,交,連接,點(diǎn)中點(diǎn),連接,以下結(jié)論:①;②;③;④平分。其中正確的結(jié)論的序號為___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,AB6AC8,BC11,任作一條直線將△ABC分成兩個(gè)三角形,若其中有一個(gè)三角形是等腰三角形,則這樣的直線最多有(

A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,等腰三角形紙片,AB=AC,BAC=30°,按圖2將紙片沿DE折疊,使得點(diǎn)A與點(diǎn)B重合,此時(shí)∠DBC=

2)在(1)的條件下,將DEB沿直線BD折疊,點(diǎn)E恰好落在線段DC上的點(diǎn)E處,如圖3,此時(shí)∠EBC= ;

3)若另取一張等腰三角形紙片ABC,AB=AC,沿直線DE折疊(點(diǎn)D,E分別為折痕與直線AC,AB的交點(diǎn)),使得點(diǎn)A與點(diǎn)B重合,再將所得圖形沿直線BD折疊,使得E落在點(diǎn)E的位置,直線BE與直線AC交于點(diǎn)M.設(shè)∠BAC=m°m90°)畫出折疊后的圖形,并直接寫出對應(yīng)的∠MBC的大。ㄓ煤m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:正方形ABCD,將RtEFG斜邊EG的中點(diǎn)與點(diǎn)A重合,直角頂點(diǎn)F落在正方形的AB邊上,RtEFG的兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),(點(diǎn)P與點(diǎn)F重合),如圖1所示:

(1)求證:EP2+GQ2=PQ2;

(2)若將RtEFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°α90°),兩直角邊分別交AB、AD邊于P、Q兩點(diǎn),如圖2所示:判斷四條線段EP、PF、FQ、QG之間是否存在什么確定的相等關(guān)系?若存在,證明你的結(jié)論.若不存在,請說明理由;

(3)若將RtEFG繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(90°α180°),兩直角邊所在的直線分別交BA、AD兩邊延長線于P、Q兩點(diǎn),并判斷四條線段EP、PF、FQ、QG之間存在何種確定的相等關(guān)系?按題意完善圖3,請直接寫出你的結(jié)論(不用證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α45°,旗桿低端D到大樓前梯坎底邊的距離DC20米,梯坎坡長BC12米,梯坎坡度i=1: ,則大樓AB的高度為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△AEC△DFB中,∠E∠F,點(diǎn)A,B,C,D在同一直線上,有如下三個(gè)關(guān)系式:①AE∥DF,②ABCD,③CEBF.

(1)請用其中兩個(gè)關(guān)系式作為條件,另一個(gè)作為結(jié)論,寫出你認(rèn)為正確的所有命題(用序號寫出命題書寫形式:如果,那么”);

(2)選擇(1)中你寫出的一個(gè)命題,說明它正確的理由.

查看答案和解析>>

同步練習(xí)冊答案