關于x的方程mx2+mx+5=m有兩個相等的實數(shù)根,則相應二次函數(shù)y=mx2+mx+5-m與x軸必然相交于點    ,此時m=   
【答案】分析:當二次函數(shù)與x軸有兩個交點時,b2-4ac>0,與x軸有一個交點時,b2-4ac=0,與x軸沒有交點時,b2-4ac<0.
解答:解:∵關于x的方程mx2+mx+5=m有兩個相等的實數(shù)根,
∴關于x的方程mx2+mx+5-m=0有兩個相等的實數(shù)根,
∴二次函數(shù)y=mx2+mx+5-m與x軸必然相交于一點;
∴△=b2-4ac=m2-4m(5-m)=0,
解得:m=0或m=4.
∵二次項系數(shù)m≠0,
∴m=4.
∴二次函數(shù)為:y=4x2+4x+1,
當y=0時,x=-,
∴相交于(-,0).
點評:此題考查了二次函數(shù)與一元二次方程之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:關于x的方程mx2-14x-7=0有兩個實數(shù)根x1,x2,和關于y的方程y2-2(n+1)y+n2+2n=0有兩個實數(shù)根y1和y2,且-2≤y1<y2≤4
①用含m的代數(shù)式
2
x1+x2
-
6
x1x2
;
②用含n的代數(shù)式表示2(2y1-y22)+14,并求n的取值范圍;
③當
2
x1+x2
-
6
x1x2
=2(2y1-y22)+14時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

關于x的方程mx2+3x+1=0有兩個實數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、關于x的方程mx2+x-2m=0( m為常數(shù))的實數(shù)根的個數(shù)有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:關于x的方程①x2-(m+2)x+m-2=0有兩個符號不同的實數(shù)根x1,x2,且x1>|x2|>0;關于x的方程②mx2+(n-2)x+m2-3=0有兩個有理數(shù)根且兩根之積等于2.求整數(shù)n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程mx2-(3m-1)x+2m-2=0.
(1)求證:無論m取任何實數(shù)時,方程恒有實數(shù)根;
(2)若m為整數(shù),且拋物線y=mx2-(3m-1)x+2m-2與x軸兩交點間的距離為2,求拋物線的解析式;
(3)若直線y=x+b與(2)中的拋物線沒有交點,求b的取值范圍.

查看答案和解析>>

同步練習冊答案