【題目】如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O交AB于點(diǎn)D,點(diǎn)E為BC的中點(diǎn),連接OD、DE.
(1)求證:OD⊥DE;
(2)若∠BAC=30°,AB=12,求陰影部分的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,為直徑,CD與相較于點(diǎn)H,弧AC=弧AD
(1)如圖1,求證:;
(2)如圖2,弧BC上有一點(diǎn)E,若弧CD=弧CE,求證:;
(3)如圖3,在(2)的條件下,點(diǎn)F在上,連接,延長FO交于點(diǎn)K,若,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過,兩點(diǎn),與軸的另一交點(diǎn)為點(diǎn).
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)為直線下方拋物線上一動(dòng)點(diǎn).
①如圖2所示,直線交線段于點(diǎn),求的最小值;
② 如圖3所示,連接過點(diǎn)作于,是否存在點(diǎn),使得中的某個(gè)角恰好等于的2倍?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與坐標(biāo)軸分別交于點(diǎn)、,其中有,,過拋物線對稱軸左側(cè)的一點(diǎn)做軸于點(diǎn),點(diǎn)在上運(yùn)動(dòng),點(diǎn)是上的動(dòng)點(diǎn),連接,.
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)求的最小值;
(3)點(diǎn)是對稱軸的左側(cè)拋物線上的一個(gè)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點(diǎn)C
處有一滴蜂蜜,此時(shí)一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點(diǎn)A處,則螞蟻到達(dá)蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.點(diǎn)D為BC中點(diǎn),E為邊AB上一動(dòng)點(diǎn)(不與A、B點(diǎn)重合),以點(diǎn)D為直角頂點(diǎn)、以射線DE為一邊作∠MDN=90°,另一條邊DN與邊AC交于點(diǎn)F.下列結(jié)論中正確結(jié)論是( )
①BE=AF;
②△DEF是等腰直角三角形;
③無論點(diǎn)E、F的位置如何,總有EF=DF+CF成立;
④四邊形AEDF的面積隨著點(diǎn)E、F的位置不同發(fā)生變化.
A.①③B.②③C.①②D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)函數(shù)時(shí),我們經(jīng)歷了“確定函數(shù)的表達(dá)式利用函數(shù)圖象研究其性質(zhì)——運(yùn)用函數(shù)解決問題“的學(xué)習(xí)過程,在畫函數(shù)圖象時(shí),我們通過列表、描點(diǎn)、連線的方法畫出了所學(xué)的函數(shù)圖象
同時(shí),我們也學(xué)習(xí)過絕對值的意義.
結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:
在函數(shù)y=|kx-1|+b中,當(dāng)x=0時(shí),y=-2;當(dāng)x=1時(shí),y=-3.
(1)求這個(gè)函數(shù)的表達(dá)式;
(2)在給出的平面直角坐標(biāo)系中,請直接畫出此函數(shù)的圖象并寫出這個(gè)函數(shù)的兩條性質(zhì);
(3)在圖中作出函數(shù)y=的圖象,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式|kx-1|+b≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三(1)班針對“垃圾分類”知曉情況對全班學(xué)生進(jìn)行專題調(diào)查活動(dòng),對“垃圾分類”的知曉情況分為、、、四類.其中,類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,每名學(xué)生可根據(jù)自己的情況任選其中一類,班長根據(jù)調(diào)查結(jié)果進(jìn)行了統(tǒng)計(jì),并繪制成了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
“垃圾分類”知曉情況各類別人數(shù)條形統(tǒng)計(jì)圖 “垃圾分類”知曉情況各類別人數(shù)扇形統(tǒng)計(jì)圖
根據(jù)以上信息解決下列問題:
(1)初三(1)班參加這次調(diào)查的學(xué)生有______人,扇形統(tǒng)計(jì)圖中類別所對應(yīng)扇形的圓心角度數(shù)為______°;
(2)求出類別的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)類別的4名學(xué)生中有2名男生和2名女生,現(xiàn)從這4名學(xué)生中隨機(jī)選取2名學(xué)生參加學(xué)校“垃圾分類”知識競賽,請用列舉法(畫樹狀圖或列表)求所選取的2名學(xué)生中恰好有1名男生、1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,點(diǎn)P是邊AB上的一動(dòng)點(diǎn),連接DP,
(1)若將△DAP沿DP折疊,點(diǎn)A落在矩形的對角線上點(diǎn)A處,試求AP的長;
(2)點(diǎn)P運(yùn)動(dòng)到某一時(shí)刻,過點(diǎn)P作直線PE交BC于點(diǎn)E,將△DAP與△PBE分別沿DP與PE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)A,B處,若P,A,B三點(diǎn)恰好在同一直線上,且AB=2,試求此時(shí)AP的長.
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到邊AB的中點(diǎn)處時(shí),過點(diǎn)P作直線PG交BC于點(diǎn)G,將△DAP與△PBG分別沿DP與PG折疊,點(diǎn)A與點(diǎn)B重合于點(diǎn)F處,請直接寫出F到BC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com