【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于E.
(1)求證:點E是邊BC的中點;
(2)求證:BC2=BDBA;
(3)當以點O、D、E、C為頂點的四邊形是正方形時,求證:△ABC是等腰直角三角形.
【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析.
【解析】
試題(1)利用切線的性質及圓周角定理證明;
(2)利用相似三角形證明;
(3)利用正方形的性質證明.
試題解析:(1)如圖,連接OD.
∵DE為切線,
∴∠EDC+∠ODC=90°;
∵∠ACB=90°,
∴∠ECD+∠OCD=90°.
又∵OD=OC,
∴∠ODC=∠OCD,
∴∠EDC=∠ECD,
∴ED=EC;
∵AC為直徑,
∴∠ADC=90°,
∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,
∴∠B=∠BDE,
∴ED=BE.
∴EB=EC,即點E為邊BC的中點;
(2)∵AC為直徑,
∴∠ADC=∠ACB=∠BDC=90°,
又∵∠B=∠B
∴△ABC∽△CDB,
∴
∴BC2=BDBA;
(3)當四邊形ODEC為正方形時,∠OCD=45°;
∵AC為直徑,
∴∠ADC=90°,
∴∠CAD=∠ADC-∠OCD=90°-45°=45°
∴Rt△ABC為等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC=,OE=3;
求:(1)⊙O的半徑;
(2)陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班數(shù)學興趣小組經過市場調查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元[
(1)求出y與x的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC,CD上分別找一點M,N,使△AMN周長最小,則∠AMN+∠ANM的角度為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△ABC中,AB=AC,點D為BC中點.∠MDN=900,∠MDN繞點D旋轉,DM、DN分別與邊AB、AC交于E、F兩點.下列結論
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD與EF可能互相平分,
其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,雙曲線y=經過ABCD的頂點B,D.點D的坐標為(2,1),點A在y軸上,且AD∥x軸,SABCD=5.
(1)填空:點A的坐標為________;
(2)求雙曲線和AB所在直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com