在平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(-
10
,0)
,點(diǎn)B在第二象限,OB=
10
,cot∠AOB=3(如圖),一個(gè)二次函數(shù)y=ax2+b的圖象經(jīng)過點(diǎn)A、精英家教網(wǎng)B.
(1)試確定點(diǎn)B的坐標(biāo);
(2)求這個(gè)二次函數(shù)的解析式;
(3)設(shè)這個(gè)二次函數(shù)圖象的頂點(diǎn)為C,△ABO繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn),點(diǎn)B落在y軸的正半軸上的點(diǎn)D,點(diǎn)A落在點(diǎn)E上,試求sin∠ECD的值.
分析:(1)過點(diǎn)B作BH⊥AO,垂足為H,在Rt△BHO中,cot∠AOB=
OH
HB
=3
,設(shè)HB=x,則OH=3x,由勾股定理求得x,從而確定點(diǎn)B的坐標(biāo);
(2)由二次函數(shù)y=ax2+b的圖象經(jīng)過點(diǎn)A、B,得方程組
(-
10
)2•a+b=0
(-3)2•a+b=1
,求出這個(gè)二次函數(shù)的解析式;
(3)根據(jù)題意,得∠AOB=∠EOC,點(diǎn)E在第二象限,過點(diǎn)E作EG⊥CO,垂足為G,確定點(diǎn)C、E的坐標(biāo),再再由勾股定理求出CE,從而得出求sin∠ECD的值.
解答:精英家教網(wǎng)解:(1)過點(diǎn)B作BH⊥AO,垂足為H,
在Rt△BHO中,cot∠AOB=
OH
HB
=3
,
設(shè)HB=x,則OH=3x,
OB=
10
,OH2+HB2=OB2,
(3x)2+x2=(
10
)2
,
∴x=1,
∴HB=1,OH=3,(2分)
∵點(diǎn)B在第二象限,
∴點(diǎn)B的坐標(biāo)是(-3,1);(1分)

(2)由二次函數(shù)y=ax2+b的圖象經(jīng)過點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-
10
,0)

(-
10
)2•a+b=0
(-3)2•a+b=1
,(1分)
解此方程,得:
a=-1
b=10
,(2分)
∴這個(gè)二次函數(shù)的解析式是y=-x2+10;(1分)

(3)根據(jù)題意,得:∠AOB=∠EOC,點(diǎn)E在第二象限,
過點(diǎn)E作EG⊥CO,垂足為G,
與(1)的解法一樣可得:點(diǎn)E的坐標(biāo)是(-1,3),
∴EG=1,OG=3(1分),
由(2),得:這個(gè)二次函數(shù)y=-x2+10的圖象的頂點(diǎn)是C(0,10),
∴OC=10,
∴CG=OC-OG=7,(1分)
在Rt△CGE中,CG2+EG2=CE2,
EC=5
2
(1分),
sin∠ECD=
EG
EC
=
1
5
2
=
2
10
(1分).
點(diǎn)評:本題考查了二次函數(shù)的綜合題型,其中涉及二次函數(shù)解析式的確定、拋物線的頂點(diǎn)公式和勾股定理等知識點(diǎn).主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊答案