【題目】如圖,EFAB,∠DCB65°,∠CBF15°,∠EFB130°

1)直線CDAB平行嗎?為什么?

2)若∠CEF68°,求∠ACB的度數(shù).

【答案】1CDAB平行,見解析;(247°

【解析】

1)根據(jù)兩直線平行、同旁內(nèi)角互補(bǔ)求出∠ABF,得到∠ABC,根據(jù)內(nèi)錯(cuò)角相等、兩直線平行證明;

2)根據(jù)兩直線平行、同旁內(nèi)角互補(bǔ)求出∠DCE,計(jì)算即可.

1CDAB平行,理由如下:

EFAB,

∴∠EFB+ABF180°,

∴∠ABF180°130°50°

∴∠ABC=∠ABF+CBF65°,

∴∠ABC=∠DCB,

CDAB;

2)∵CDEF

∴∠DCE+CEF180°

∴∠DCE180°68°112°,

∴∠ACB=∠DCE﹣∠DCB47°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某劇院的觀眾席的座位為扇形,且按下列分式設(shè)置:

排數(shù)(x

1

2

3

4

座位數(shù)(y

50

53

56

59

(1)按照上表所示的規(guī)律,當(dāng)x每增加1時(shí),y如何變化?

(2)寫出座位數(shù)y與排數(shù)x之間的關(guān)系式;

(3)按照上表所示的規(guī)律,某一排可能有90個(gè)座位嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】材料閱讀

角是一種基本的幾何圖像,如圖1角可以看作由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形.鐘面上的時(shí)針與分針給我們以角的形象.如果把圖2作為鐘表的起始狀態(tài),對于一個(gè)任意時(shí)刻時(shí)針與分針的夾角度數(shù)可以用下面的方法確定.

因?yàn)闀r(shí)針繞鐘面轉(zhuǎn)一圈()需要12小時(shí),所以時(shí)針每小時(shí)轉(zhuǎn)過

如圖3時(shí)針就轉(zhuǎn)過

因?yàn)榉轴樌@鐘面轉(zhuǎn)一圈()需要60分鐘,所以分針每分鐘轉(zhuǎn)過

如圖4分針就轉(zhuǎn)過

再如圖5時(shí)針轉(zhuǎn)過的度數(shù)為,分針轉(zhuǎn)過的度數(shù)記為,此時(shí),分針轉(zhuǎn)過的度數(shù)大于時(shí)針轉(zhuǎn)過的度數(shù),所以時(shí)針與分針的夾角為

知識應(yīng)用

請使用上述方法,求出時(shí)針與分針的夾角.

拓廣探索

張老師某周六上午7點(diǎn)多去菜市場買菜,走時(shí)發(fā)現(xiàn)家中鐘表時(shí)鐘與分針的夾角是直角,買菜回到家發(fā)現(xiàn)鐘表時(shí)針與分針的夾角還是直角,可以確定的是張老師家的鐘表沒有故障,走時(shí)正常,且回家時(shí)間還沒到上午8點(diǎn),請利用上述材料所建立數(shù)學(xué)模型列方程,求出張老師約7點(diǎn)多少分出門買菜?約7點(diǎn)多少分回到家?(結(jié)果用四舍五入法精確到分.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,兩個(gè)完全相同的三角形紙片 ABC DEC 重合放置,其中∠C=90°,∠B=E=30°

操作發(fā)現(xiàn):如圖 2,固定ABC,使DEC 繞點(diǎn) C 旋轉(zhuǎn),當(dāng)點(diǎn) D 恰好落在 AB 邊上時(shí), 填空:

①線段 DE AC 的位置關(guān)系是

②設(shè)BDC 的面積為 S1,AEC 的面積為 S2,則 S1 S2 的數(shù)量關(guān)系是

猜想論證

當(dāng)DEC 繞點(diǎn) C 旋轉(zhuǎn)到如圖 3 所示的位置時(shí),請猜想(1)中 S1 S2 的數(shù)量關(guān)系是否仍 然成立?若成立,請證明;若不成立,請說明理由.

拓展探究

已知∠ABC=60°,BD 平分∠ABC,BD=CDBE=6,DEAB BC 于點(diǎn) E(如圖 4).若在射線 BA 上存在點(diǎn) F,使 SDCF=SBDE,請求相應(yīng)的 BF 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如右上圖,在正方形ABCDAB=3,,以B為圓心,半徑為1畫⊙B,點(diǎn)P在⊙B上移動(dòng),連接AP,并將AP繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn) 90°至AP′,連接BP′,在點(diǎn)P移動(dòng)過程中,BP′長的取值范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

某些代數(shù)恒等式可用一些卡片拼成的圖形的面積來解釋.例如,圖①可以解釋,因此,我們可以利用這種方法對某些多項(xiàng)式進(jìn)行因式分解.

根據(jù)閱讀材料回答下列問題:

1)如圖②所表示的因式分解的恒等式是________________________.

2)現(xiàn)有足夠多的正方形和長方形卡片(如圖③),試畫出一個(gè)用若干張1號卡片、2號卡片和3號卡片拼成的長方形(每兩張卡片之間既不重疊,也無空隙),使該長方形的面積為,并利用你畫的長方形的面積對進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于拋物線y=-x2+2x+3,有下列四個(gè)結(jié)論:①它的對稱軸為x=1;

②它的頂點(diǎn)坐標(biāo)為(1,4);

③它與y軸的交點(diǎn)坐標(biāo)為(0,3),與x軸的交點(diǎn)坐標(biāo)為(-1,0)和(3,0);

④當(dāng)x>0時(shí),y隨x的增大而減小.

其中正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一個(gè)足球垂直水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t5t2(0t4).

(1)當(dāng)t=3時(shí),求足球距離地面的高度;

(2)當(dāng)足球距離地面的高度為10米時(shí),求t;

(3)若存在實(shí)數(shù)t1,t2(t1t2)當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自行車廠某周計(jì)劃生產(chǎn)2100輛電動(dòng)車,平均每天生產(chǎn)電動(dòng)車300輛.由于各種原因,實(shí)際每天的生產(chǎn)量與計(jì)劃每天的生產(chǎn)量相比有出入,下表是該周的實(shí)際生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù),單位:輛)

1)該廠星期一生產(chǎn)電動(dòng)車     輛;

2)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)電動(dòng)車     輛;

3)該廠實(shí)行記件工資制,每生產(chǎn)一輛車可得60元,那么該廠工人這一周的工資總額是多少元?

查看答案和解析>>

同步練習(xí)冊答案