【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是(
A.當(dāng)m=﹣3時(shí),函數(shù)圖象的頂點(diǎn)坐標(biāo)是(
B.當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長度大于
C.當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過同一個(gè)點(diǎn)
D.當(dāng)m<0時(shí),函數(shù)在x 時(shí),y隨x的增大而減小

【答案】D
【解析】解:因?yàn)楹瘮?shù)y=ax2+bx+c的特征數(shù)為[2m,1﹣m,﹣1﹣m]; A、當(dāng)m=﹣3時(shí),y=﹣6x2+4x+2=﹣6(x﹣ 2+ ,頂點(diǎn)坐標(biāo)是( , );此結(jié)論正確;
B、當(dāng)m>0時(shí),令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣ ,
|x2﹣x1|= + ,所以當(dāng)m>0時(shí),函數(shù)圖象截x軸所得的線段長度大于 ,此結(jié)論正確;
C、當(dāng)x=1時(shí),y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即對任意m,函數(shù)圖象都經(jīng)過點(diǎn)(1,0)那么同樣的:當(dāng)m=0時(shí),函數(shù)圖象都經(jīng)過同一個(gè)點(diǎn)(1,0),當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過同一個(gè)點(diǎn)(1,0),故當(dāng)m≠0時(shí),函數(shù)圖象經(jīng)過x軸上一個(gè)定點(diǎn)此結(jié)論正確.
D、當(dāng)m<0時(shí),y=2mx2+(1﹣m)x+(﹣1﹣m) 是一個(gè)開口向下的拋物線,其對稱軸是: ,在對稱軸的右邊y隨x的增大而減。?yàn)楫?dāng)m<0時(shí), = ,即對稱軸在x= 右邊,因此函數(shù)在x= 右邊先遞增到對稱軸位置,再遞減,此結(jié)論錯(cuò)誤;
根據(jù)上面的分析,①②③都是正確的,④是錯(cuò)誤的.
故選D.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P,Q分別是∠AOB的邊OA,OB上的點(diǎn).

(1)過點(diǎn)POB的垂線,垂足為H;

(2)過點(diǎn)QOA的垂線,交OA于點(diǎn)C,連接PQ;

(3)線段QC的長度是點(diǎn)Q 的距離, 的長度是點(diǎn)P到直線OB的距離,因?yàn)橹本外一點(diǎn)和直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段PQ、PH的大小關(guān)系是 (用“<”號(hào)連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BECDE,交直線ACF.

(1)點(diǎn)D在邊AB上時(shí),請證明:BD=AB﹣AF;

(2)試探索:點(diǎn)DAB的延長線或反向延長線上時(shí),請?jiān)趥溆脠D中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),A的坐標(biāo)為(1, ),則點(diǎn)B的坐標(biāo)為(
A.(1﹣ +1)
B.(﹣ , +1)??
C.(﹣1, +1)
D.(﹣1,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=ACAB的垂直平分線分別交AB,AC于點(diǎn)D,E

1)若A=40°,求EBC的度數(shù);

2)若AD=5EBC的周長為16,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的ABC,若小方格邊長為1,格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A,C的坐標(biāo)分別為(﹣1,1),(0,﹣2),請你根據(jù)所學(xué)的知識(shí).

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對稱的三角形A1B1C1

(3)判斷ABC的形狀,并求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算:(a﹣b)2﹣a(a﹣2b);
(2)解方程: =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD∠B的平分線,交AC于點(diǎn)D,EAB中點(diǎn),EDBC的延長線于點(diǎn)F.求證:AB=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系中,點(diǎn) B(m,0)、A(n,0)分別是 x 軸軸上兩點(diǎn), 且滿足多項(xiàng)式(x2mx+8)(x23xn)的積中不含 x3項(xiàng)和 x2項(xiàng),點(diǎn) P(0,h) y 軸正半軸上的動(dòng)點(diǎn)

(1)求三角形ABP 的面積(用含 h 的代數(shù)式表示)

(2)過點(diǎn) P DPPB,CPPA,且 PDPB,PCAP

連接 AD、BC 相交于點(diǎn) E,再連 PE,求∠BEP 的度數(shù)

CD y 軸相交于點(diǎn) Q,當(dāng)動(dòng)點(diǎn) P y 軸正半軸上運(yùn)動(dòng)時(shí),線段 PQ 的長度變不變?如果不變,請求出其值;如果變化,請求出其變化范圍

查看答案和解析>>

同步練習(xí)冊答案